
.i a

Lfl

W NPS52-88-021

(NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
A LANGUAGE TRANSLATOR

FOR A

COMPUTER AIDED RAPID PROTOTYPING
SYSTEM

Charlie Robert Moffitt, II T I1c

Thesis Advisor September 1988 Luqi

Approved for public release; distribution is unlimited.

Prepared for:

Naval Postgraduate School

Monterey, CA 93943 89 6 01 015
,~~ ,9 6 01 015

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. C. Austin H. Shall
Superintendent Provost

This report was prepared in conjunction with research conducted for the National

Science Foundation and funded by the Naval Postgraduate School.

Reproduction of all or part of this report is authorized.

This report was prepared by:

LUQI
Assistant Professor
of Computer Science

Reviewed by: Released by:

ROBERT B. MCGHEE KNEAL RSALL
Chairman Dean of Infor ion
Department of Computer Science and Policy Science

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Is. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

NPS52-88-021
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If applicable)

Naval Postgraduate School 52 National Science Foundation
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943 Washington, DC 20550
81. NAME OF FUNDING/ SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

Naval Postgraduate School 0&MN, Direct funding
kc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT

ELEMENT NO. NO. NO ACCESSION NO.
Monterey, CA 93943 II

11. TITLE (Include Security Classification)

A LANGUAGE TRANSLATOR FOR A COMPUTER AIDED RAPID PROTOTYPING SYSTEM (U)
12. PERSONAL AUTHOR(S)
MOFFITT, Charlie R., LUQI

13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT
Annual FROM 87/09 TO 88/08 1988, Sept 116

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP computer aided software engineering, rapid prototyping,
specification, real-time software, embedded systems,
software design, reusability

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
While the cost of computing hardware has decreased steadily, the cost of software design,
development and, maintenance has increased. One approach to reduce the cost of soft-
ware development is rapid prototyping. Further, it has been proposed to combine the
design strategy of rapid prototyping with a computer aided software prototyping system.
Such a system would allow the software designer to employ a software base of reusable
program modules. It would assist in prototyping and would automate a large part of the
development effort. An important component of the automation would be a language trans-
lator facility. This translator would allow the designer to develop a software proto-
type in a high level sperification language which would be simple and convenient to use
and would translate the specification statements into an executable software language.

This report demonstrates the feasibility of using a language translator by developing a
prototype translator for computer aided software prototyping system. The translator

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
0 UNCLASSIFIED/UNLIMITED M SAME AS RPT. 0 DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Lui 408 646-2735 52Lq

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete * u.S. oovermmet priitsn, offi e 3H0-40644

UNCLASSIFIED

UNCLASST1?TED
SCCUF4TlY CLASSIFICATION OF -rwsS PAGE 0%ea DOGa 3e...E

19. is written in Attribute Grammar (AG) language and translates software

specifications stated in the Prototype System Description Language (PSDL) into

computer executable code in the Ada language.

Accession For

JTIS GRA&I

DTIC TAB

Unanno-unced 0

J1 / 7 GOPY

B' I2LFO46O

DiUNCLASSIFIED"Yu~Y IsS~lCTO
OriI AG(uDleUl*E

Approved for public release; distribution is unlimited.

A Language Translator
For A

Computer Aided Rapid Prototyping System

by

Charlie Robert Moffitt, II
Lieutenant, United States Navy

A.B., Central Wesleyan College, 1972

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN TELECOMMUNICATIONS SYSTEM
MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
March 1988

Author: q

Approved by: _.__

Luqi, Th1 IIAdvisor

MajorJohn B. Isett, nd Reader

D epDrtm dVrative Science

Acin 1 eo Inoat-- n oic cine

ABSTRACT

While the cost of computing hardware has decreased steadily, the cost of software
design, development and, maintenance has increased. One approach to reduce the cost
of software development is rapid prototyping. Further, it has been proposed to combine

the design strategy of rapid prototyping with a computer aided software prototyping
system. Such a system would allow the software designer to employ a software base of
reusable program modules. It would assist in prototyping and would automate a large
part of the development effort. An important component of the automation would be
a language translator facility. This translator would allow the designer to develop a
software prototype in a high level specification language which would be simple and
convenient to use and would translate the specification statements into an executable
software language.

This thesis demonstrates the feasibility of using a language translator by developing
a prototype translator for a computer aided software prototyping system. The translator
is written in Attribute Grammar (AG) language and translates software specifications
stated in the Prototype System Description Language (PSDL) into computer executable

code in the Ada language. ,. , , '

' IUY I IJI(I9

TABLE OF CONTENTS

I. INTRODUCTION .. 1
A. COMPUTER AIDED PROTOTYPING SYSTEM I

B. CENTRAL AIM OF THIS PAPER 6

II. THEORETICAL UNDERPINNINGS OF CAPS 8

A. HARDWARE AND SOFTWARE: A PROBLEM 8
B. THE TRADITIONAL "WATERFALL LIFE CYCLE" 14

C. RAPID PROTOTYPING 16

D. IDEAS FOR INTEGRATED, AUTOMATED PROGRAMMING ENVI-

RON M EN TS .. 19
E. DESCRIPTIONS OF A COMPUTER AIDED PROTOTYPING SYSTEM 21

F. THE PSDL LANGUAGE AND RAPID PROTOTYPING 21

G. ATTRIBUTE GRAMMARS AND TOOLS 23

[Il. IMPLEMENTATION AND DESIGN CHOICES 27

A . CA PS .. 27

B. FOUNDATIONS FOR CAPS 27

C. ADA AND PSDL .. 41

D. TRANSLATOR DESIGN AND CONSTRUCTION 50

IV. GENERAL APPLICABILITY TO TELECOMMUNICATIONS SOFT-

W A RE SYSTEM S ... 52

A. SOME CURRENT NAVAL TELECOMMUNICATIONS SYSTEMS ... 52

B. SOME PROPOSED NAVMACS FOLLOW ON SYSTEMS 54

C. POSSIBLE CONTRIBUTIONS TO TELECOMMUNICATIONS FROM

CAPS RESEARCH .. 57

V. CONCLUSIONS AND FUTURE RESEARCH POSSIBILITIES FOR CAPS 61

APPENDIX A. PSDL GRAMMAR SUMMARY 63

iv

APPENDIX B. DIAGRAMATIC REPRESENTATION OF PSDL 66

APPENDIX C. ADA SOURCE CODE IMPLEMENTATION OF VARIOUS

PSDL CONSTRUCTS .. 75

APPENDIX D. PROGRAM LISTING FOR THE TRANSLATOR 79

APPENDIX E. PROGRAM LISTING FOR TEST PROGRAM IN PSDL 94

LIST OF REFERENCES ... 98

BIBLIOG RA PHY ... 102

INITIAL DISTRIBUTION LIST 105

VI

LIST OF TABLES

Table 1. A SUMMARY OF SOME CHARACTERISTICS OF CURRENT
NAVY TELECOMMUNICATIONS SYSTEMS AND THEIR SOFT-

W A RE ... 53
Table 2. TYPICAL FUNCTIONS FOR NAVMACS AND PROPOSED

NAVMACSMODEL II 56

vi

LIST OF FIGURES

Figure 1. Computer Aided Prototyping System Architecture (CAPS) 2
Figure 2. Execution Support System (ESS) structure 4

Figure 3. Static and Dynamic Schedule Schema 5
Figure 4. Changing hardware/software cost ratio 9
Figure 5. Harware/Software cost trends II
Figure 6. Software supply and demand trends 12
Figure 7. Traditional "waterfall" approach to the software lifecycle 15
Figure 8. Rapid prototyping approach to software engineering 17

Figure 9. Various types of PSDL operators 31
Figure 10. Acyclic Digraph ... 35

Figure 11. Augmented Acyclic Digraph 36
Figure 12. 'Triggered By" construction in PSDL 37
Figure 13. Combination of Periodic and Sporadic Operators 38
Figure 14. Uncertain buffer operation 46
Figure 15. Translator construction and usage 51

vii

1. INTRODUCTION

A. COMPUTER AIDED PROTOTYPING SYSTEM
A computer aided prototyping system (CAPS) has been proposed which would im-

plement many ideas for improving software productivity [Ref. 1: p. 681. Figure 1 on

page 2 illustrates the proposed architecture of such a system. This architecture is de-

signed to be implemented in an automated environment, the rapid prototyping schema.

The automated environment will make it practical to develop, test, and quickly modify

prototypes of a proposed system. It will make possible the demonstration of a working

system (or perhaps several) to the customer in order to firm up requirements and func-

tional specifications.

1. Major CAPS Components

The CAPS architecture consists of six major subsystems. The central objective

of the system is to optimize the use of the programmer's time in prototype development.

The objective of prototype development is to:

* provide a firm set of requirements and functional specifications which will guide
development of the production software.

" ensure agreement between customer and developer as to the requirements and ex-
pected performance characteristics of the system

* generate a modular, skeletal structure of the software system which will serve to
guide further implementation

* shorten prototype development time and thus accelerate production system delivery

* assist in estimating the ultimate development costs of the finished system

The CAPS allows the designer to enter a specification-based description of the

proposed system in a high level languag o constructed especially for prototype develop-

ment. These specifications are acted upon by a rewrite subsystem and an execution

support subsystem. The rewrite subsystem converts the specification statements into a

normalized form. The normalized statements are used to search a software database of

reusable components which are then provided to the execution support subsystem for

instantiation in the prototype. The specifications are also acted upon by the execution

support subsystem to produce executable code into which the reusable software modules

USERINTERFACE L

PROTOTYPE SYSTEM
DESCRFKON LANGUAGE

REWRITE SUBSYSTEM

OFTWARE DESIGN 'EXECUTION SUPPORT
ANAGEMENT SYSTEM [SYSTEM

PROTOTYPE
DATABASE

SOFTWARE BASE

Figure 1. Computer Aided Prototyping System Architecture (CAPS)

are instantiated. The resulting prototype can then be tested for conformance to specifi-

cations and proper operation. New versions or redesigned versions can be quickly con-

structed and tested as the need arises.

1. A Prototype Language

The core of the CAPS is the Prototype System Description Language (PSDL).

It is optimized for use at the specification and design level of programming. Special

structures exist for describing real-time systems. A PSDL description represents a system

2

as operators communicating via data streams. The structure of the language encourages

modular design of the prototype and by extension the eventual production version. A

more detailed examination of PSDL will be undertaken in Chapter 3 of this paper.

3. Rewrite System

The rewrite system examines the PSDL file and produces a normalized version

of the specifications which is used to search the software base for appropriate compo-

nents. If no component is found, the designer may examine the module to see if it can

be decomposed into more primitive modules. If it can be, then the new modules are

specified in PSDL, the specifications are normalized, and the search is repeated. If

no modules are found and the modules cannot be decomposed then they must be hand

coded in the executable language. When modules are found in the software base, they

are provided to the execution support subsystem for instantiation in the prototype pro-

gram. The functions of managing the database, searching it for appropriate modules,

and calling forth those that are found is the province of the Software Design Manage-

ment System. Currently a special Object-Oriented DBMS is being developed to meet the

special requirements of the SDMS [Ref. 2]. For present testing it may be necessary to

employ a commercially available database, though none currently meets the special re-

quirements of this system. [Ref. 1: p. 70]

4. Execution Support System

The Execution Support System (ESS) consists of three interrelated parts, one

of which is the subject of this paper. Figure 2 on page 4 illustrates the relationship be-

tween the components of the ESS. Each element of the system and its function will be

briefly described. The Translator design will be developed in Chapter 3 and 4.

a. Translator

The Translator (TL) converts PSDL source code into Adal source code.

Output from the TL is provided to the Ada compiler/linker along with some additional

information from ',he Static Scheduler (SS) to produce Ada object code. The object code

is then exported to the operating system and can be run for test and demonstration

purposes. The TL passes real time constraints through without translation. The TL

I Ada is a registered trademark of the United States Government, Ada Joint Program Office.

3

! DSUREFLEH
TA IG TH ~X J EPR E.P

q
O C E SSO R

UNK.

PRGRAMRUNLH

Figure 2. Execution Support System (ESS) structure

creates code to implement the operators as procedures which will be called by the main

subprogram/schedule created by the SS. The TL is responsible for instantiating a ge-

neric package which models the data stream buiTers between operators. The TL also

ensures that all operator triggering conditions are encoded correctly, and that the Trig-

ger data type and the Exception data type are properly encoded for the final model.

4

b. Static Scheduler

The SS examines the PSDL source file to locate all modules having real-

time constraints, and to determine if any special precedence relations exist among the

modules. The SS then generates the necessary Ada code to implement the timing con-

straints and the precedence relationships. The SS also generates the main subprogram

or task. The SS finally generates a schedule of operation for the program which takes

into account the worst case time schedule for all modules that have critical, real-time

constraints such as maximum execution time, minimum calling period, and minimum

response time. This information is encoded into the modules to enforce timing con-

straints at run time. Figure 3 illustrates the action of the SS. Janson [Ref 3] and

O'Hcrn [Ref. 4] have studied the conceptual and initial empirical investigations into the

design and implementation of the SS.

fime critical'"

/ , 1 opeators must|

gb sc. edudh

Beg in End|harmonic| harmonic'

L ' o c / b l c k .

Time available-

for non-critical/
operators

Figure 3. Static and Dynamic Schedule Schema

c. Dynamic Scheduler

The Dynamic Scheduler (DS) operates at runtime along with the prototype

model. It is designed to control the execution of all non-critical operators within the

program. A non-critical operator is one which is not subject to hard real-time con-

straints. The DS is invoked each time there is spare time within the static runtime

schedule created by the SS. At that time DS commences execution of the next available

module in its set of operators and continues to invoke non-critical modules until the

available time is exhausted. At that point, operation of the DS is interrupted and con-

trol is returned to the SS to continue the time critical operations. Figure 3 on page 5

shows the relationship between the DS operation and the SS operation. Eaton [Ref. 51

has examined the conceptual and fundamental design issues for the DS.

B. CENTRAL AIM OF THIS PAPER

In order to approach the development of the proposed CAPS architecture on a

sound basis, it is necessary to consider the important theoretical ideas on which the ef-

fort will be based. The key literature which made possible the effort to produce this

prototype translator will be reviewed. The reader may also wish to consult additional

references cited in the bibliography. Many of the materials therein provide insight into

the difficult problems of improving productivity in software engineering through auto-

mated means, and of configuring software systems to address real-time constraints on

system performance.

The purpose of this paper is to demonstrate the feasibility and functionality of an

automated language translation facility which can be coupled into a larger, integrated

system for automated software prototyping. This translator will receive as input a

source file in PSDL which specifies the system to be prototyped. It will produce as

output, source code in the Ada language which will be compiled and exported to the

operating system. Discussion of the rationale for choosing PSDL and Ada for use in a

prototyping environment will be presented in Chapter 3. Architecture and design of the

translator will be developed in Chapter 3. This study will be limited to producing a

translator capable of recognizing the full PSDL syntax and producing, at most, rudi-

mentary Ada output. This limitation is imposed because a rigorous, formal definition

6

of the relationship between Ada and PSDL has not yet been accomplished. Once such

a definition is achieved, the results must be applied to the elementary translator created

in the present effort. The resulting translator, combining a formally established re-

lationship between the source and target languages with a translator which recognizes

PSDL syntax, will meet the requirements of the CAPS architecture for a translator ap-

plicable to general cases.

The present work is arranged as follows:

Chapter 2 discusses the theoretical basis for the CAPS system and surveys previous
research which lays the foundation for the present work.

Chapter 3 presents the basic implementation approach to the translator construction.

Chapter 4 presents some possible applications of CAPS research to the field of tele-
communications.

Chapter 5 presents conclusions and possible future avenues for research.

7I

11. THEORETICAL UNDERPINNINGS OF CAPS

A. HARDWARE AND SOFTWARE: A PROBLEM

Several trends have become apparent in the computing industry. These trends have

a significant impact on the field of software engineering. The first of these trends is the

expansion of computer usage into an ever widening arena of applications. Early digital

computers were largely confined to military, governmental, and research applications.

A relatively small population of users was affected by the computer. Today the com-

puter is a significant feature of everyday life for almost the entire industrialized world.

Few governments or businesses function without the aid of computer systems. Com-

puter systems route our telephone calls and record our bank transactions. Military

forces worldwide employ computers for handling record traffic and a variety of com-

mand and control functions, as well as many tactical applications.

One study estimated that forty percent of the U.S. labor force relied on computers

in performance of their daily work during 1985. Another barometer of the growth in

demand for computing is the percentage of the Gross National Product (GNP) that it

represents. It has been estimated that the total amount spent on all aspects of com-

puting in 1980 was approximately 5 percent of GNP or about S130 billion. It is expected

that this will rise to as much as 12.5 percent of GNP by 1990 [Ref. 6: p. 1241.

Another trend, is the increasing power of each new generation of computing ma-

chines and the corresponding decrease in relative cost for a machine of that power. The

cause of this trend is found in improved engineering and production methods for tran-

sistors and integrated circuits. The advent of Large Scale and Very Large Scale Inte-

gration (LSI, VLSI) have made possible great improvements in computing hardware

architecture and lower costs of production. Each new generation of computing ma-

chines has benefited from engineering and production knowledge gained in previous

generations. Today's machines are more reliable and robust in performance than their

predecessors.

8

The decrease in hardware costs and increasing demand for computing services has

generated a third trend in the industry. There is an increasing cost of software devel-

opment and maintenance as compared to the costs of hardware, and there is an in-

creasing cost of software as a total fraction of computing costs. Figure 4 on page 9

shows the changing ratio of expenditures for hardware and software over time [Ref. 7].

The figure should not be interpreted as applying to any specific system. Instead, it re-

presents the general trend within the industry, that software development and especially

maintenance represents an increasingly large portion of the cost of computing. The shift

in resources to software maintenance arises from several considerations. There is more

and more software to be maintained so a correspondingly larger number of persons are

required to perform maintenance functions.

100

80 Hardware

0

60 Software development

a.
40

20

1955 1978 1985

Figure 4. Changing hardware/softwhare cost ratio

9

Mills [Ref. 8: p. 2671 points out that in only 25 years of software development his-

tory, some 75 percent of data processing personnel are taken up with maintenance, not

development. He states two reasons for this. One is logistic and the other a technical

reason. The logistic reason is that systems are maintained indefinitely after a definite

period of development. Each time a development is completed some fraction of the

work force must be diverted to maintenance. Mills [Ref. 8: p. 267) demonstrates that,

for a constant work force working for a long period of time, the 75 percent fraction

devoted to maintenance can be predicted. He states that only the purging or replace-

ment of older applications keeps the figure below 100 percent. The technical reason is

that it has proven more difficult to develop correct and capable systems in the first place.

The ability to integrate and debug systems has been consistently underestimated. Time

after time software systems are late in delivery and do not do the things the users ex-

pected them to do. Also, there have consistently been underestimations of the uncer-

tainty and change facing software applications. For both these reasons, a large work

force is required to do both corrective and adaptive maintenance to keep the application

software functioning [Ref. 8: p. 2671.

Another aspect of maintenance is what we mean by that term in the software in-

dustry. Maintenance of software systems does not simply mean corrective maintenance

in the strictest sense. Carrio [Ref. 9: p. 19] lists many other activities which are often

encompassed by the term, including:

" Enhancing the system ("gold-plating") in ways that do not alter the core require-
ments of the system

• Adding new or substituting other requirements for performance relative to those
implemented (often the result of a poorly defined requirements set at the beginning
of development)

" Changing the baseline performance level to expand the performance envelope or
due to expected changes in doctrine-optimization

" Changing baseline requirements due to a planned evolutionary development of the
system

Mills [Ref. 8: p. 267] humorously describes the terms "debugging" and "mainte-

nance" as euphemisms in the software engineering world. Debugriny is the correction

of errors in the program which were originally put there by the programmers.

10

Maintenance is the restoral of the program to a correct state of operation; but the

program was never correct in the first place. The point he aims at is that proper soft-

ware design and engineering techniques are required to achieve maximum productivity

and quality software systems.

Beohm [Ref. 101 estimates that in 1980, the cost of software for computer man-

ufacturers, user organizations, and software firms was $40.2 billion dollars. This

amount represented 84 percent of the total budget spent ui computing hardware and

software. As seen in Figure 5, software may account for 90 percent of the amount

spent on computing systems by the 1990's [Ref. 11: p. 49].

Percent of cost

100

80 - Hardware

60

40
Software

20

I I I
1965 1970 1985

Year

Figure 5. Harware/Software cost trends

11

The rising costs of software have been well documented in DOD. In 1973, software
costs represented over 46 percent of the total DOD software budget [Ref. 12: p. 14.

It has been noted that DOD experienced a 51 percent increase in the direct costs of its

computing systems, in spite of dramatic declines in the cost of hardware

[Ref 13: p. 3].

Unfortunately, productivity in software engineering has not kept pace with the

growth in demand for computing systems and software applications. This is graphically

illustrated in Figure 6 [Ref 141.

2.5

0

o. 2.0 Demand (12%/yr)
X

Of - 1 .5 -

a-

, Prod uctivityl4°//y r)
B 1.0

S0.5 -Personnel(4%/yr)

0.5
Cr
w

1980 1982 1984 1986 1988 1990

Figure 6. Software supply and demand trends

The figure shows that growth in demand for qualified software personnel is growing at

a rate which outstrips their availability. Furthermore, tile growth in productivity among

software personnel also lags demand. It has been estimated that the average

12

programmer, in the absence of modern programming methods, can produce six to ten

lines of debugged code per day. This is influenced by a variety of factors ranging from

programmer competence to the number of persons working on a project and the purpose

for which the program is written. Fairley [Ref. 15: p. 17] states as a rule of thumb,

that typical productivity levels for a programmer on a per day basis as a function of task

complexity are:

* less than one line per day for systems programming

• 5 to 10 lines per day for utility programs

* 25 to 100 lines per day for application programs

It is a truism that, in general, a computing system is only as capable and reliable

as the software employed in the system. In an age of incredible advances in hardware

technology, the computing industry is hampered by slow gains in productivity in soft-

ware engineering. Various sources of this situation have been cited. One element is the

relative youth of the software engineering discipline in comparison to other engineering

fields. Only three decades of experience and study support software engineering. These

have been three decades of momentous change. The early leaders of the computing

revolution were not native to the field. There has been a great deal of learning "on the

job" for most software engineers. Until barely ten years ago there was a lack of rigor

associated with program development and software engineering. As time has passed

software engineers have recognized the need to develop a more rigorous approach to

programming [Ref. 8: p. 268-2691. Even the relatively young field of electronics engi-

neering is founded in the rigor and discipline of centuries of physical science and

mathematics.

Another problem has been the failure to recognize the importance of human com-

munication to the discipline of software engineering. Computing is a human endeavor,

in support of human needs. Humans must be able to communicate those needs to the

system developer, who in turn must express an answer to those needs in the computing

system. If there is any failure of communication by either party the result will be a

system that fails in one degree or another to meet the requirements of the human user.

13

These trends lead us to conclude that some effort must be made to achieve greater pro-

ductivity and effectiveness in software engineering.

B. THE TRADITIONAL "WATERFALL LIFE CYCLE"

1. Characteristics

The traditional method of software engineering is the "waterfall life cycle."

Figure 7 on page 15 shows a graphic representation of this approach. Under this

schema, the customer perceives a need for a computing application for his operation

or organization. He approaches a software developer and describes his problem. After

some negotiation, the software developer determines what he believes the user's needs

are and an agreement is reached to produce a computing package to meet the need.

Contracts are let and the developer converts the customer's statements of need into

precise (hopefully) functional specifications which can be implemented by the program-

mers. An architectural design is established based on some method of data flow or

control flow. The system is then parceled out to programmers in manageable modules

which each programmer is free to implement. As modules are developed they are as-

sembled. When the system is complete then full scale testing and debugging of the sys-

tem begins. If the system tests satisfactorily, the job is done and the system delivered

to the customer for acceptance. Then begins the cycle of system maintenance. If the

system fails or has numerous bugs (as is invariably the case with large systems) or if the

system does not meet the functional specifications, or, worse, does not function as the

customer expected, then the system must be restructured in various ways to correct the

problem. This can be very costly, especially since tremendous amounts of manpower

will have been already been invested at this point.

2. Difficulties With The Traditional Approach

Carrio [Ref. 9: p. 171 describes this life cycle as a three phase event consisting

of:

* conceptual and definition phase (the requirements analysis phase)

* development phase (from functional specifications through test system)

• deployment and operational phase (maintenance and support)

14

ANALYSIS

FUNCTIONAL
SPECIFICATIONS

ARCHITECTURAL
DESIGN

DESIGNI
IMPLEMENT

SYSTEM TEST
TEST SYSTEM SATISFACTORY?

SYSTBM
MA~reTBANCE

Figure 7. Traditional "waterfall" approach to the software lifecycle

He points out that the problem with this approach is the lack of interaction

between the keepers of doctrine (the customers) and the developers in the early stages

of the life cycle. Phase one is the province of the users. Phase two belongs to the de-

velopers and their supporting programmers and subcontractors. Then in phase three the

two groups begin to interact in earnest. The key difficulty with this life cycle is

15

communications -- the ability of the user and developer to communicate, understand and

insure the integrity of the initial set or requirements. The question of whether the "as

specified," the "as designed," the "as tested," and the "as built" systems are all the same

must be asked again and again. Under this life cycle the answer is no [Ref. 9: p. 181.

Frequently this life cycle approach has led to cost overrun, late product delivery, and

failure of the "as delivered" system to meet the needs of the customer. It may be con-

cluded that the traditional life cycle is one source of difficulty in the struggle to achieve

greater effectiveness and productivity in software engineering.

Several techniques have been proposed to improve upon the traditional life cy-

cle. First of all, a rigorous design phase, in which customer requirements are exhaus-

tively examined to produce a firm set of functional specifications which accurately reflect

what the customer wants. These are used throughout the remaining life cycle as the

standard for system development. Second, the use of prototyping in an automated en-

vironment to provide guideline models for the entire life cycle. Use of automated tools,

Al/knowledge based systems, and various application support environments to aid the

software engineer in developing, documenting, and maintaining the system

[Ref. 9: p. 201. This would be coupled with top down development and a structured

approach to design to enhance system maintainability and reliability

[Ref. 8: pp. 269-271].

C. RAPID PROTOTYPING

1. Description of Rapid Prototyping

An alternative to the traditional approach is rapid prototyping. Under the rapid

prototyping paradigm, an effort is made to ensure that the customer and the developer

both understand what the customer's requirements for a software system are. This

schema is graphically illustrated in Figure 8 on page 17. In this approach, there is

again a period of discussion with the customer to determine his requirements. The re-

quirements are used to generate functional specifications. With the functional specifi-

cations, a prototype of the intended system is constructed and demonstrated for the

customer. At this point the customer can decide if the prototype reflects the type system

he had in mind; and the developer can see whether his perception of the customer's

16

DETERMINE
ROUIREMENTS

GENERATE
FUNCTIONAL
SPECIFICATIONS

ADJUST
FUNCTIONAL
SPECIFICATIONS

]4CONST1RUCT
PR~OOYPE

Figure 8. Rapid prototyping approach to software engineering

requirements was correct. Any adjustment needed in the functional specifications are

made, the prototype system is recoded to reflect the adjustments, and the system is

once again demonstrated. This process is repeated until the prototype behaves as the

customer and the developer expect. Full scale development of the system is commenced

once prototyping is completed. [Ref. 16]

17

IF I I

2. Objectives of Rapid Prototyping

The iterative, rapid prototyping approach accomplishes several goals. First,

it insures accurate communication between the customer and the developer. Due re-

cognition to the difficulties of human interaction is given. The customer certainly knows

his profession and has a clear mental picture of what he wants to accomplish with a

computing system, but may not understand computing systems themselves. The soft-

ware engineer understands computing systems but may not understand the world of the

customer. They are both speaking English but may have no idea what each other is

saying. Rapid prototyping seeks to cut through the communication difficulty by pro-

viding an executable model of the intended system which the customer can see. The

customer will usually be able to recognize whether a working software system performs

as he expects. This will ensure a stable set of requirements is achieved early in system

development. [Ref. 1: p. 71]

Prototype construction aims to make efficient use of the designer's time. As

such it differs from production software in which the goal may be driven by the need to

optimize speed, or memory usage, or accuracy and ease of use. Production software

is designed to be fault tolerant and capable of handling a wide range of error conditions.

The prototype may not be fault tolerant at all. In all probability, it will not be opti-

mized in performance. Prototyping the system generates a skeletal design framework

which may serve as the initial design structure of the production version [Ref. 1: p. 71].

The early prototypes provide a traceable link between requirements, design, imple-

mentation and maintenance (Ref. 9: p. 201. The use of prototypes aids in feasibility

studies. Various methods of implementing portions of the system can be tested and the

more promising methods can then be selected for implementation in the production

system. Finally the prototyping approach aids in cost estimation. The cost of the final

system will often be proportional to the final cost of the production version.

[Ref. 1: p. 711

18

D. IDEAS FOR INTEGRATED, AUTOMATED PROGRAMMING

ENVIRONMENTS

In his ACM award winning dissertation, Generating Language Based Environments,

Thomas W. Reps [Ref. 17: pp. 1-2] raises many salient issues regarding software engi-

neering and software productivity. He observes that much of software development re-

quires exhaustive attention to organizational detail. By this he means many things.

Among them are:

* the need to constantly be concerned with details of language syntax and semantics

* the accurracy of program entry

* the details of operating a series of software tools such as editors,
compilers, linkers, debuggers, and library managers (all in the proper order)

* maintaining an audit trail of documentation for the system
under development

* the necessity to communicate with others in the development process

All the while the system developer or programmer also hopes to perform creative

intellectual work, yet it comprises a small part of his daily effort. The remainder of his

time is eroded away by the mundane details of the job. A similar observation has been

made by Fairley [Ref. 15: p. 12-131 and Brooks [Ref. 18: p. 16-181. Reps goes on to

point out that much effort has been expended to make the programmer's life easier; to

shield him from the details and allow him to do creative work. The form of this help

has characteristically been a series of automated tools such as editors, debuggers, parser

generators and the like. These tools have provided some relief, and have aided pro-

ductivity. However, they have generated problems of their own such as:

* learning to operate each of these independent tools

* employing the tools in the correct sequence when needed

Worse, the individual tools are not normally integrated with each other to take full

advantage of computing power now available, and to automate away the maximum

amount of detail, leaving the programmer completely free to pursue productive creative

endeavor. Reps argues that to make true breakthroughs in this area it will be necessary

to create an automated design environment incorporating all necessary tools under one

19

coherent interface. He contends that such a system would be optimized to the particular

language for which it is designed. This would be achieved by designing an integrated

environment which "understands" semantics of the programming language being used

in it.

Reps then presents the development of a Synthesizer Generator whose purpose is to

generate language-based edtiors for different programming languages. The tool uses a

specification of the display format, syntax, and static semantics of the language to be

edited. The objective is to create an editing environment which will prevent entry of

incorrect syntax while the programmer is editing the program. The primary concern of

the Reps dissertation is developing a framework for the semantic component of the

language based editor. He discusses various methods to generate a programming envi-

ronment from an attribute-grammar description of a language. Reps also discusses what

attribute grammars are and discusses several algorithms for attribute evaluation. He

then shows how the semantic component of a language-based editor can be developed

from an attribute grammar description and discusses some of the problems created by

using attribute grammar based development systems, chief of which is the extravagant

use of storage resources. [Ref. 17: p. 41

Several ideas in Reps work have impact on the design features envisioned for the

CAPS. These include:

" incorporation of an "intelligent" editor environment which will aid the program
designer in entering the prototype description correctly

* integration of all the tools necessary for program prototyping under one coherent
interface.

" use of attribute grammar based approaches to language description.

There are similarities and differences in what Reps does and in what is aimed for in

the CAPS generally and in the Translator in particular. Reps is specifically concerned

with development of editing environments based on attribute-grammar descriptions of

a language. CAPS is concerned with incorporating an intelligent editor along with nu-

merous other tools in order to remove a great deal of the mundane drudgery from soft-

ware development. Reps uses attribute-grammar approaches to develop editing

20

environments. In this thesis, an attribute grammar based tool is used to develop a

translator which can convert PSDL into Ada.

Reps' work sets a direction for future programming development environments. It

helps reveal a promising application for the concept of attribute-grammars. It demon-

strates the practical application of important theoretical concepts to the problems of

productivity in software engineering.

E. DESCRIPTIONS OF A COMPUTER AIDED PROTOTYPING SYSTEM

A general description of a CAPS is provided in two papers. First is the technical

report, A Computer Aided Prototyping System, by Luqi and Ketabchi [Ref. 1]. Second

is the technical report, Research aspects of Rapid Prototyping, by Luqi [Ref. 161. These

papers describe the overall concept of a CAPS. They lay out an architectural design for

such a system and provide a starting point for the research in this thesis.

The CAPS would provide an integrated environment for the development and test-

ir.g of prototypes of software systems. It would be specifically designed to address sys-

tems which were iarge, embedded, and had hard, real-time constraints. It would make

use uf the Ada language, and would employ a database system to store and recall both

reuseable software components in the Ada language, and previously designed proto-

types in the PSDL language. A system to automatically translate the PSDL descriptions

of a system into Ada code and compile them so that they could be executed to demon-

strate the prototype would be provided. The CAPS would be based on two ideas which

would establish the fundamental character of the system. One is the methodology of

rapid prototyping, the other is a language (PSDL) specifically designed for writing

prototype designs of systems with hard, real-time constraints. PSDL would give ex-

pression to the methodology of rapid prototyping and form the core of the CAPS.

F. THE PSDL LANGUAGE AND RAPID PROTOTYPING

The central paper on the PSDL language and the application of the rapid proto-

typing methodology is Luqi's Ph.D. dissertation, Rapid Prototyping For Large Software

System Design [Ref. 19]. Four related papers have been published which provide similar

detail on the nature of PSDL and rapid prototyping. These are:

• A Prototyping Language for Real Time Software [Ref. 201

21

* Rapid Prototyping of Real-time Systems [Ref. 211

* Languages for Specification, Design, and Prototyping [Ref. 221

* Execution of Real-Time Prototypes [Ref. 231

The Execution of Real- Time Prototypes paper is a short technical report prepared for

the Naval Postgraduate School. It very briefly summarizes the concept of CAPS and the

rapid prototyping methodology. The remaining papers are closely related in content and

purpose to one another, and are separated by the depth to which they examine the

subject from the technical report.

Th(seminal paper among the remaining papers is the Luqi Ph.D. dissertation. The

paper begins by introducing the PSDL language. An extensive discussion of the CAPS

system is set forth. The various components of the PSDL language are presented. The

application of rapid prototyping to a system developed using PSDL is discussed in some

detail. There is a brief discussion of the implementation of various PSDL language

components within the ESS, and a discussion of the functions of the SS, DS, and TL.

An example of a PSDL prototype is presented. Finally, a summary of PSDL syntax in

BNF form is provided.

The BNF summary of PSDL syntax is included as Appendix A of this thesis. From

the standpoint of translator design, the most important sections of the dissertation, are

section 2, on PSDL language elements and the discussion, in section 4, on how certain

PSDL elements might be implemented by the Translator. Since the objective of this

paper is to develop a Translator, section 4 of the Luqi dissertation provides the foun-

dation for chapter 3 and 4 of this thesis.

Two of the papers are available in published journals. The paper, A Protoyping

Language for Real-Time Software [Ref. 201, is essentially a reprise of the information

presented in the Luqi thesis, without the BNF diagrams for PSDL. The paper presents

a detailed description of PSDL and its employment under a rapid prototyping paradigm.

Rapid Prototyping of Real-Time Systems [Ref. 21] presents an abbreviated discussion

of PSDL and its use in a rapid prototyping setting. Less emphasis is placed on the

specifics of PSDL syntax and language elements, and more on the general model and

concepts involved in employing PSDL under the rapid prototyping methodology. The

22

paper serves as an excellent introduction to the fundamentals of PSDL and rapid pro-

totyping in the CAPS environment.

Languages for Specification, Design, and Prototyping [Ref. 22], is an extensive

presentation of the current state of language development in the three separate areas of

specification, design, and prototyping. The authors distinguish between the three goals

and discuss the characteristics of a languages aimed at satisfying the demands of each

of the particular areas. Discussions and illustrations of various currently available lan-

guages are presented. The paper is an excellent general discussion of issues involved in

selecting a language for a particular purpose. The paper points up the different prob-

lems associated with each approach to software production and demonstrates possible

solutions. PSDL is presented as a good general purpose language for specification,

design, and prototyping. PSDL has many features which make it convenient for use

with Ada including:

* is an executable language construction unlike many specification or design lan-
guages which are not

* supports a modular approach to program design.

* supports data, control, and operator abstraction

* supports exception handling, separate compilation of generic units, and use of
reuseable components.

G. ATITRIBUTE GRAMMARS AND TOOLS

The objective of this thesis is to generate a translator which will read a PSDL source

file and produce and Ada source file. This might prove a daunting task were it not for

the availability of an automated translator generator tool called Kodiyak [Ref. 24]. The

Kodiyak system requires as input, an attribute grammar (AG) description of the source

language. It is proper to consider some literature which addresses AG's in general, and

the Kodiyak in particular.

1. Attribute Grammars: What Are They?

The classic work on AG's, is Semantics of Context-Free Languages

[Ref. 25: pp. 127-145). The paper sets forth " . . . a technique for specifying the

meaning' of languages defined by context-free grammars " (Ref. 25: p. 1271 It is

assumed that the language is "context-free", That is, the 'meaning" of any string or

23

element in the language is independent of the context in which it is used. This is usually

not the case for natural languages (e.g., English, et al.), but often is the case for pro-

gramming languages. It is asserted that the "meaning' of any string in a context-free

language can be determined ". . . by defining "attributes" of the symbols in a derivation

tree for that string." (Ref. 25: p. 127] If the production rules for a given language are

known, it is possible to assign functions to each of the production rules which define

the -attributes" of a given symbol or combination of symbols. The attributes may be

developed in one or both of two ways. They may be "synthesized", defined in terms of

their descendants; or they may be "inherited", defined in terms of their ancestors

[Ref. 25: p. 1281. Colloquially, synthesized attributes are developed from the bottom

up in the derivation tree, while inherited attributes are developed from the top down.

Once all the attributes of all the symbols in the string are known, the "meaning" of the

string is known, These simple but powerful concepts form the foundation of AG ap-

proaches. Knuth presents an applicative example of these principles as the first part of

his paper (Ref. 25 pp. 128-130]. Th1, remainder of the paper is devoted to the math-

ematic and formal properties of the technique, and another example of how the method

can be applied to programming languages. Finally, Knuth compares his method with

other known methods of semantic definition.

For the purposes of this paper it is possible to summarize Knuth's work. First,

suppose there is a language for which there are a set of production rules. PSDL is such

a language, with a context-free grammar and a set of production rules in the form of

BNF diagrams for the language. Then to determine the "meaning" of any string con-

structed according to those rules, it is necessary to:

1. parse the string into its component parts and create a derivation tree of the string

2. create a set of functions (equations) which assign meaning to each of the compo-
nents of the string

3. reduce (determine the meaning of) the string based on the BNF rules and the
meaning of each of the components

The Kodiyak system allows the application of the technique in a practical and

convenient fashion to real problems. Detailed discussion of the AG approach will be

deferred to chapter four of this thesis. Suffice it to say, that AG's have been used for

24

a variety of purposes, among them, the construction of compilers, pretty-printers, and

translators. Knuth's short paper is at once the cornerstone and keystone of a whole area

of software engineering research.

2. An AG Based Tool For Translator Generation

The effort required to produce a translator of the type desired for the CAPS is

considerable. Fortunately, a tool has been developed which makes possible the auto-

matic generation of translators. That tool is the Kodiyak system. Kodiyak is an AG

based tool developed by Robert M. Herndon as a Ph.D. dissertation at the University

of Minnesota [Ref. 24]. The Ph.D. dissertation provides exhaustive details on the tech-

nical aspects of translator generation, the operation of AG based systems, and the de-

sign and construction of Kodiyak. Another work on the Kodiyak is AG: A Useful

Attribute Grammar Translator Generator [Ref. 261. Although it refers to an earlier ver-

sion of the Kodiyak (then known as AG), it provides a useful description of the Kodiyak

system. The most useful work is The Kodiyak Reference Manual, which is an appendix

to the dissertation [Ref. 24: app. 11. This is a detailed reference manual describing how

to employ the Kodiyak to generate a translator.

Kodiyak itself is ". . a language designed for constructing translators

[Ref. 24: p. 1, app 11" It is AG based. "The Kodiyak translator accepts a context-free

grammar along with such attribute declarations and equations, a scanner specification,

and output declarations, and generates the described translator

[Ref. 24: p. 1, app 1]." Kodiyak works on many Unix02 based systems. It requires the

use of various resident utilities. A C library and compiler, the LEX (lexical analyzer)

[Ref 271 and the Yacc (yet another compiler compiler) [Ref, 28] must be present in or-

der to use Kodiyak. The system is very effective and is presently in use at this institution

to develop a pretty printer, as well as the translator presented in this thesis. It is pres-

ently in operation on a Vax83 11/785 and a Sun04 3/50 diskless workstation. The pres-

ent translator is being developed on the Sun station.

2 Unix is a registered trademark of Bell Laboratories.

3 VAX is a registered trademark of the Digital Equipment Corporation.

4 SUN is a registered trademark of Sun Microsystems Incorporated

25

There are only a few significant difficulties with the present Kodiyak. First, the

system requires a great deal of storage, and a great deal of cpu time. The translator

listing for the CAPS, presented in appendix C, requires about five minutes to compile

on the Sun station. This is a station dedicated to the translator work and is otherwise

idle. On the Vax 11/785, with normal user loads, the same listing requires about 10

minutes to compile. The five minute figure on the Sun station represents actual cpu

time. Second, the error messages and error handling in the system is not always as

helpful as it could be. Error messages often refer to temporary files created by LEX or

Yacc and not to the original source file. Also, when Kodiyak scans the input file, it

may allow certain error conditions to pass through which will later be fatal during Lex

or Yacc scans. Typical of this type error is a mispelled variable name. So long as

Kodiyak finds correct syntax in the input file it will allow the file to be presented to Lex

and Yacc for processing. A mispeled variable name will result in a fatal crash of the

Yacc scan and may be fatal to the Lex scan. Ideally Kodiyak should trap any errors of

this type and exit immediately so that the user can correct the problem before the time

consuming LEX and Yacc scans begin. Nevertheless, Kodiyak is powerful and signif-

icantly eases the effort required to construct the translator.

The Kodiyak operates by taking an input file which is an AG description of the

input language and the attribute equations which relate the input language to the output

language. After scanning the file to insure it is. in correct Kodiyak syntax, the file is

passed to Lex and Yacc for processing. The end result is an executable translator,

compiled in the C language. This translator can accept textfile input and will produce

textfile output.

26

III. IMPLEMENTATION AND DESIGN CHOICES

A. CAPS

Prototype System Description Language (PSDL) provides the backbone of the

CAPS for design and specification, while Ada was chosen as the language for imple-

mentation. The basis for this choice is found in the characteristics of the languages

chosen. Each offers advantages and disadvantages for the design, specification, and

implementation of hard real-time, large, and embedded systems. Alone, each presents

difficulties in use. Used together in CAPS, the two languages experience a symbiosis,

which results in flexibility, power, and ease of use for the system developer. The same

power, convenience, and ease of use are available for the development of CAPS itself.

1. Implementation Questions for CAPS

CAPS is under development and not yet fully implemented. This paper aims to

demonstrate a working prototype for the CAPS translator. Several other papers are in

progress which specifically address other aspects of the system. The capabilities envi-

sioned for CAPS are extensive.

* How can it achieve them?

" What is the foundation of the system?

" Why is that choice of foundations better than others?

" Why is Ada not sufficient in itself to achieve hard, real-time system design and
implementation?

" What are the general properties of real-time systems that demand a tool like CAPS?

These questions and others form the basis of this chapter.

B. FOUNDATIONS FOR CAPS

1. Prototype System Description Language (PSDL)

PSDL is the foundation on which CAPS is being built. It is a language designed

to support construction of large and embedded systems and those with hard, real-time

constraints.

27

a. Embedded and Real- Time System Properties

Embedded and hard real-time systems have several general properties which

place special demands on the designer and his language tools. These properties are:

1. Often large, running to millions of lines of code and thousands of modules

2. Often operated in a multiprocessor environment

3. Under the DOD concept, their primary function is often not computing but con-
trolling or monitoring the operation of complex or safety critical systems

4. Generally have requirements for high reliability, and penalize the user severely
upon failure (loss of aircraft and crew, loss of control of critical manufacturing or
industrial process, etc.)

5. Expect to be employed over an extended lifetime, with periodic updates and mod-
ification to maintain currency

6. Are too large for a single individual to understand or program alone but require the
efforts of teams of programmers and maintenance personnel

7. Often require hard, real-time constraints in operation (i.e., operational schedules
and deadlines within the program in response to real world conditions)
[Ref. 12: p. 15-161

These characteristics demand several features of a prototyping language

which are summarized as follows:

1. Should have a simple computational model which limits and exposes the inter-
actions between modules and is consistent with the prototyping methodology

2. Should produce executable prototypes

3. Should be simple and easy to use

4. Should support hierarchical design to simplify construction of large, complex sys-
tems

5. Should apply at both specification and design phase, thereby providing a unified
notation to the user

6. Should provide specifications suitable for retrieval of reuseable modules from a
software base

7. Should support data abstraction, control abstraction, and function abstraction

8. Should contain abstractions which can be used to construct real-time systems
[Ref. 19: p. 10]

28

b. Why Use PSDL?

PSDL and Ada both approach the design of software ir- the same manner.

There are several advantages to employing PSDL in the CAPS over using Ada directly.

First, PSDL is a much simpler language. Its grammar (see Appendix A) is very small,

compared to the Ada grammar which is very large. The compactness of PSDL allows

its use as a tool with which to search a software base by automated means for previously

written modules which will implement the designer's objectives. The designer does not

need to know what units are available. The CAPS will search for Ada components in

the software base for him, and will incorporate them into the prototype as long as they

match the PSDL description. Second, CAPS will use the PSDL description to produce

a graphic representation of the prototype program's hierarchical structure. PSDL is a

distillation of the Ada language's constructs. Third, the CAPS translator will automat-

ically generate interconnections for Ada procedures to implement PSDL operators.

c. PSDL Computational Model

PSDL supports the specification and design of hard, real-time and embed-

ded systems with a simple and executable computational model. PSDL models software

systems as a set of OPERATORS communicating via DATA STREAMS. The formal

computational model is an augmented graph:

G = (V,E,T(v),C(v))

where:

* V is the set of vertices

* E is the set of edges

* T(v) is the maximum execution time for each vertex

* C(v) is the set of control constraints for each vertex v

Each vertex represents an operator while each edge represents a data

stream. Components V, E, and T(v) are called the ENHANCED DATA FLOW

DIAGRAM. [Ref. 19: p. III

29

2. Major PSDL Language Structures

a. Operators

In PSDL, Operators may be either atomic or composite. Composite oper-

ators can be decomposed into two or more operators, each of which may be composite

or atomic. Atomic operators cannot be decomposed into simpler components. This is

a colloquial rather than formal distinction. It envisions a hierarchical breakdown of the

system into logical components which are as simple as possible without becoming trivial.

No special rules for decomposition are imposed. This distinction allows the modeling

of hierarchically structured programs as sets of operators. Operators at higher levels in

the program structure are composite while those at the lowest level of the program

structure become the atomic operators. PSDL can therefore be used to support top

down design strategies.

A second classification considers that operators may be data driven or pe-

riodic. Under this schema, the firing of a data driven operator is accomplished due to

the presence of data in its input data stream(s), while the firing of a periodic operator is

dependent upon timing constraints which must be met during program operation. The

data driven operator allows the modeling of systems which utilize data flow as a means

of control instead of the more traditional timing control in real-time systems. In either

case, when an operator fires, it reads one data object from each of its input streams and

writes, at most, on object to each of its output streams.

A third classification of operators is allowed. An operator may be either a

function or a state machine. This description relates to the values output from the op-

erator. The output value of the function type operator is dependent solely on the cur-

rent set of values present on the input streams to the operator. The output of the state

machine type depends, not only upon the current set of input values, but also on the

values of a finite number of state variables internal to the operator. Figure 9 on page

31 illustrates several aspects of the PSDL operator concept.

Each of the preceding operator classifications can be directly related to ex-

isting concepts in Ada. Ada supports both top down and bottom up design strategies

in a hierarchical, modular program structure. PSDL allows the description of each

module as an operator. In Figure 9 on page 31 A is an operator with one input stream,

30

Top level OPERATOR
as a functiona JA e

AA

' B B cc c.CC DD ..

Second level
decomposition

CC is a STATE MACHINE

Figure 9. Various types of PSDL operators

a, and one output stream, e. In this case A is a function since no state variables are seen.

A is also a composite operator which can be decomposed into three operators, BB, CC,

and DD which are atomic operators (they are not or cannot be decomposed further).

In this representation, CC is a state machine, since it has state variable, found on data

stream d, which is combined with the value on its input stream, b, to generate the output

value on data stream c.

At the lower level of decomposition, A still exists, but is repr.esented in

greater detail by the three atomic operators and their associated data streams. The input

31

data stream to BB is a'. The data type and value found on a' will be the same data type

and value found on a, and similarly for e and e'. This structure is analogous to an Ada

program being composed of one or more subprograms. For example, we might use an

Ada procedure to represent A. This procedure might contain three Ada subprograms

(functions or procedures) which are called within it to implement A. Procedure DD

would produce value which would be passed to A on an output parameter of DD. This

would be passed out of A as a value on an output parameter of A. In Ada, each of the

operators could be separately compiled. BB, CC, and DD could be written first, then A

written and compiled (bottom up), or the specification of A could be written and com-

piled, then the specifications of BB, CC, and DD, and finally the implementation code

for each of the operators could be written (a combination of top down and bottom up).

In the model shown in Figure 9 on page 31, the arrows represent data

streams. Each of these is labeled with a lower case letter. The label is a name for the

data stream. PSDL data streams can carry two types of data values. The first type may

considered the normal type. Normal type data can be any abstract data type. It is

characterized by being immutable and no global representations are allowed. This fea-

ture prevents coupling problems within the prototype where operators communicate via

shared data. State variables for an operator are specifically local to the operator and can

only be changed internal to their own operator. This also prevents coupling problems

in the prototype design. PSDL uses the immutable subset of built in Ada types, plus

user defined types, and the special types TIMER and EXCEPTION.

The second type of data which can be transmitted are tokens representing

exception conditions. This is the PSDL type EXCEPTION and corresponds to the Ada

exception construct. Thus, PSDL uses the Ada approach of representation hiding and

data abstraction in program design. It is much simpler to use PSDL than to use Ada

directly. For the translator, all variables, including user defined types, will be placed into

an Ada package. The resulting Ada program will employ the with/use construct from

Ada to make these variables available to the program.

32

b. Data Streams

In PSDL, data streams represent a communication link between exactly two

operators. One operator is the producer of the data while the other is the consumer of

the data. There are two types of PSDL data streams. One is the DATA FLOW

STREAM the other is the SAMPLED STREAM. The DATA FLOW STREAM can

be thought of as a first in first out (FIFO) queue capable of holding, at most, one data

value. This data value may be used one time by the consumer operator. It may not be

overwritten by the producer. In effect, this stream guarantees deliver of the data value,

and guarantees that each individual data value will be read once and only once. The

second type queue can also be thought of as a queue of length one. In this case, (the

sampled stream), delivery of an individual data value is not guaranteed. The data value

may be overwritten by the producer before the consumer reads it, or may be read mul-

tiple times by the consumer, or not at all. The choice of data stream is dependent upon

the control conditions specified for the operator.

c. Operator Control Techniques

Two types of control are allowed in PSDL. The first is periodic. This is a

common form of operator control in which operators are fired by some regular schedule.

This form of control is supported in PSDL by several constructs. The primary construct

is PERIOD followed by a time value. The SS in the ESS will recognize the PERIOD

token and will utilize the time value supplied to generate an Ada schedule program

which will invoke the Ada procedure representing the PSDL operator. The periodic

operator must fire sometime between the beginning of the period and some deadline

which defaults to the end of the period [Ref. 19: p. 17]. Thus, PERIOD is an upper

bound on the length of time allowed between any two firings of a given operator. This

is an explicit period.

It is possible to arrive at an implicit period. Such an implicit period would

be known as an equivalent firing period. An operator for which an equivalent firing

period would be calculated by the SS would not contain the PERIOD token. It might

inherit a period from a higher level of decomposition in a hierarchical prototype or it

might contain PSDL tokens for MAXIMUM EXECUTION TIME (MET), MAXI-

MUM RESPONSE TIME (MRT), or MINIMUM CALLING PERIOD (MCP) which

33

would result in the SS calculating an equivalent firing period for the operator. MET is

an upper bound on the length of time which may elapse from the beginning of execution

of a module to the end of the execution of that module IRef. 19: p. 20). MET may be

applied to all operator types.

MRT has two different interpretations. The first applies to periodic opera-

tors. In this case, MRT is an upper bound on the time from the beginning of a period

and the time when the last data has been output onto the output stream of the operator

[Ref. 19: p. 201. The second case for MRT applies to a class of operators known as
Sporadic operators. Sporadic operators lack an explicit PERIOD. Sporadic operators

are triggered by the arrival of data on the input streams of an operator (or set of data

streams for the NATURAL DATA FLOW (NDF)) (Ref. 19: p. 20]. NDF is a form

of control dependent on the flow of data through the prototype to cause the firing of

operators. For the Sporadic operator, M RT is an upper bound on the elapsed time from

the arrival of new data on the input streams to the operator and the time when the last

data value is placed on the output stream of the operator in response to the arrival of

the new data values. MCP is a lower bound on the elapsed time allowed between the

arrival of one set of values on the input streams of an operator and the arrival of the

next set of values on the input streams. For SPORADIC operators, if MRT is used,

then MCP must also be used [Ref. 19: p. 20].

For sporadic operator control PERIOD is not specified. The SS calculates

an equivalent firing period if the operators have the MET token. It uses the information

calculated to generate a calling schedule for program operation just as SS would if the

program used the PERIOD token and were therefore periodically controlled. If the

operator is sporadic and does not contain MET then the SS will conduct a topological

sort of the operators to determine a calling schedule In Figure 10 on page 35 we see the

application of the topological sort to a set of operators. The information required for

the sort is found in the link construct of PSDL which is part of the GRAPH token.

The acyclic digraph is generated from the link information. In the case of Figure 10

on page 35 no MET information is supplied in the link construct. In Figure II on page

36 MET information is supplied within the lirk construct. The resulting schedule for

each set of operators is the same.

34

link statement corresponding to
above acyclic digraph - no MET are
Included for the operators

a.1 -2 2

b.2 -. 3

c.3 . 4

d.1 -, 4

possible schedule resulting from a topological sort

1,2,3,4

Figure 10. Acyclic Digraph

NDF control of sporadic operators is signified by the PSDL token TRIG-

GERED BY. This token will be qualified by either the additional token ALL or SOME.

TRIGGERED BY ALL indicates that an operator is to be fired when new data values

have arrived on all the input streams to the operator. TRIGGERED BY SOME implies

that the operator will be fired by the arrival of a new data value on any one of the input

streams to the operator. Figure 12 on page 37 illustrates these two different con-

structions. Note that the designer must specify which input streams the TRIGGERED

35

3 b
3

4

5

link statement for above AUGMENTED
ACYCUC DIGRAPH - MET are Include for
each operator

a.1:5 -) 2

b.2:4 -3, 3

c.3:5 -3 4

d.1:5 -3p 4

(possible schdule for above9 AUGMENTED ACYCLIC DIGRAPH1

1,2,3, 4

Figure 11. Augmented Acyclic Digraph

BY ALL/SOME construction refers to. He may specify a proper subset of the input

streams in either case. In this way, if an operator has multiple input streams, but only

a few of them are critical to the firing of the operator, the designer may so specify. NDF

is not normally combined with periodic control. The application of timing control to a

model using NDF is allowed. The MRT and the MCP tokens may be used with the

NDF form of control among SPORADIC operators.

36

d

triggered by all d,f,h

h

r
triggered by some r

k (no triggered by token)

FF

Figure 12. "Triggered By' construction in PSDL

Figure 13 on page 38 illustrates the combination of Sporadic and Periodic

control. In this case, a conflict develops between the two schedules developed on the

basis of-

1. Topological sort

2. Periodicity constraints

37

period = 10
MET = 1

A period 20

a MET=

C triggered by all a, b

schedule resulting from periodic schedule

HARMONIC BLOCK

1 1 3 3 1 11 k? 1 23 25s t

0 10 20 30 40 50

schedule fails - A and B must fire before C due precedences
established by the topological sort but periodicity constraints
cannot be acheived

Figure 13. Combination of Periodic and Sporadic Operators

The SS would develop a schedule based on the periods specified. It would

also develop a topological sort. It would compare the two schedules and would recog-

nize that they do not match and might fail. It would nevertheless allow the program to

be compiled and run on the basis of the periodic schedule which would fail when C at-

tempts to fire a second time before B has fired a second time. This indicates a flaw in

the design of the prototype and would require the designer to intervene to correct the

problem.

38

It is not the purpose of this paper to discuss in detail the development of

scheduies from the PSDL specification. The aim is to demonstrate that PSDL has a

powerful set of language constructions to deal with real-time constraints in software

systems. PSDL offers a variety of means to control the operation Uf a real-time systems.

It is necessary to discuss the forms of control available so that certain implementation

aspects for the translator can be introduced. It is also important to recognize that Ada

is not nearly so flexible in describing real-time constraints as is PSDL.

Conditional firing of operators can be accomplished by the addition of input

or output predicates in the PSDL specification. Referring to Figure 9 on page 31, the

designer might specify one of the following:

* OPERATOR A TRIGGERED BY ALL a IF a:critical

* OPERATOR CC TRIGGERED BY ALL b IF b:NORMAL AND d:critical

This illustrates the use of an input predicate. The triggering condition acts

as a guard for the operator. The conditional can be applied to both Sporadic and Peri-

odic operators. A Periodic operator would fire only if the input predicate were true. If

it were not true, the Periodic operator would read the inputs without firing. The input

conditional can depend only on the input values to the operator and any TIMER values.

An example of an output control would be:

OPERATOR DD OUTPUT x IF x > 100

This functions as if we had an explicit, conditionally executed filter operator

following it [Ref. 19: p. 19]. The output guard provides a convenience to the designer

but could be simulated by adding another operator to the prototype with an input con-

dition on its firing.

d. Timer

TIMER is a PSDL construct which is useful in the development of real-time

systems. A timer is an abstract state machine. In PSDL it is somewhat like a stopwatch.

It has the primitive operations of START, STOP, RUN, and RESET. It is used for such

things as measuring the length of time between two events, or the length of time the

39

system or an operator has remained in a particular state. TIMER does not function in

th alic way as a Clock construct for an .,p.rating ;ystem. It does not provide direct

control of operator firing, but can be used as a value for a PSDL input or output con-

ditional to act as a guard to the firing of an operator. It is primarily provided to collect

statistics about the prototype system.

e. Exception

It was noted above that PSDL supports both ziormal and EXCEPTION

data types. The PSDL EXCEPTION is a built in type. It can be transmitted on any

data stream as a data value. It can be suppressed by the use of input or output condi-

tionals. It can be handled in PSDL or in Ada. Some possible operations for the PSDL

EXCEPTION are

* to create an exception with a given name

* to detect if a value on a data stream is

an exception with a given name

normal (not an exception) [Ref 19: p. 14]

Although the PSDL exception is a data type and the Ada EXCEPTION is

not, the Ada EXCEPTION can be used to implement and handle PSDL EXCEPTION

types very conveniently. The major benefit from treating EXCEPTION as a data type

in PSDL is abstraction. By this abstract construction, a unified means of handling all

exceptions throughout the prototyping process is created IRef. 19: p. 14]. Since all ex-

ceptions are handled the same way, there is no need for special constructions to handle

each specific case. Thus construction of prototypes is simplified, and another step is

taken toward automation of the prototyping process. This also simplifies translation of

the exception condition into Ada. A generic exception handler can be created in Ada

and instantiated by the translator as needed during translation. The abstraction eases

the job of the prototype designer, which is the whole point of a computered aided pro-

totyping system.

40

C. ADA AND PSDL

1. Ada ant Real-Time Systems Constraints

a. Difficult Direct Implementation of Real- Time Constraints in Ada

The Ada implementation of such aspects of real-time systems as PERIOD,

MET, MCP, MRT, and TIMER is not trivial. Ada DELAY by itself has no upper

bound but is a lower bound on the delay implied. The Ada DELAY and SELECT

constructs cannot be used to implement these performance constraints directly for a

system of operators. The use of the type DURATION allows the approximation of an

interval in a loop construct but it is not as flexible as needed. The use of TASKS in Ada

provides more capability through the use of conditional entry calls. The problem ';'ith

these constructs is that they require a good deal of effort on the part of the programmer

to implement, and the program is operating at the mercy of the Ada run-time system.

The degree of effort required to implement these constructs directly in Ada is out of

proportion with the aims of the rapid prototyping methodology. A more abstract and

direct syntax is required to specify hard, real-time constraints which wilt ,aake con-

struction and demonstration of prototypes possible. If the designer is required to invest

nearly as much effort into the creation of the prototype as the development of the sys-

tem itself, there is no advantage to prototyping. Furthermore, the Ada run-time system

will not guarantee that the prototype design behaves in exactly the same manner as

specified. The purpose of the SS and the DS in CAPS, is to ensure that the prototype

functions within the real-time constraints applied to the design. Barring errors in design,

the feasibility of such aspects of the system as control flow, order of firing of program

modules, time behavior, and I/O formats can be demonstrated with CAPS. The ESS,

frees the designer from the implementation effort required in Ada by automatically

generating executable code in Ada, and by automatically generating control code in the

form of Static and Dynamic schedules which enforce control and timing behavior.

Therefore, PSDL supports develpopment of large and embedded Ada programs directly

and easily.

41

b. Ada in Support of The CAPS Environment

Ada iq most suitable for the development of CAPS for several reasons:

" Ada is the language mandated for development of embedded and real-time systems
for DOD

* Ada provides constructs which can be used to implement more abstract timing be-
havior.

* Ada constructs can be used in a multiprocessor environment

* Ada provides simple exception handling facilities

• the GENERIC feature in Ada provides a simple means to implement automated
prototype construction

2. Implementation of The PSDL Model in Ada

At this point several design implementation aspects of the Translator (TL) por-

tion of ESS will be presented.

a. Operator

The OPERATOR constructioti of PSDL can be implemented by producing

an Ada procedure. This procedure would contain code to implement any PSDL input

or output conditional statements. It would also contain code to check the validity and

availability of data for NDF control. Before presenting an example of this construction

it will be necessary to develop the implementation of the PSDL data streams.

b. Data Streams

A PSDL data stream may be thought of as a simple queue of length one.

Appendix C, part A, illustrates the construction of a simple queue in Ada. It is a pro-

cedure. With some minor modification, the queue can be made generic. This iF ac-

complished by enclosing the procedure in a package and adding the Ada GENERIC

part. An Ada private type is declared in the generic part. This private type allows the

passing of any data type into the queue simply by declaring the type description at the

point of generic instantiation. Thus, a generic queue is created which can be used at any

point where a data stream is needed, by the simple use of the Ada generic instantiation.

This technique is illustrated in Appendix C, part A.

(I) Generic Buffer Task. Recall that there are two different type data

streams in the PSDL schema. One is a FIFO queue while the other is the sampled

stream. Therefore, two different generic queue models are required. One of these

42

receives and transmits data without condition. This is the sampled stream, and will be

referred to as a simple queue. Each data value in the simple queue may either be read

many times or not at all. The second queue model will have a Boolean flag indicating

whether or not it has been written since the last read operation or whether it has been

read since the last write operation. This is the FIFO queue used for NDF control. The

Boolean flag is necessary since delivery at least once, but only once, of each data value

sent through the queue is required in natural data flow. If there is a violation of the

FIFO rule, then the Boolean flag will result in the queue raising an exception. There

are two possible exceptions. One will be identified as Underflow, and the other as

Overflow. Underflow will be raised if the consumer operator attempts to read the queue

before it has been updated by the producer operator. Overflow will be raised when the

producer attempts to write 'o the queue before the consumer has read the previous data

value.

The translator must have some basis to select the appropriate queue

for a given data stream. If an operator contains the TRIGGERED BY ALL tokens then

FIFO queues will be selected for the streams listed following the ALL token. If the

operator contains the TRIGGERED BY SOME tokens then simple queues will be se-

lected for the data streams. A third condition is if the operator contains no TRIG-

GERED BY tokens. In this case simple queues will be selected. For example, in

Figure 12 on page 37, operator T has four input streams. The specification for T is,

TRIGGERED BY ALL d,fh. The translator will select FIFO queues for streams d,f, and

h. Stream g will be a simple queue. In the same figure, operator P has four input

streams. The specification for P is, TRIGGERED BY SOME r. In this case all data

streams will be simple. Again in Figure 12 on page 37, operator FF has two input

streams. The specification for FF lacks a TRIGGERED BY token. Therefore, all the

streams are simple streams. Thus, if the operator specification lacks the TRIGGERED

BY token, or contains the SOME token, the streams will be simple. If a stream is not

listed in the ALL specification it will be simple. Only when the operator contains the

ALL token will a FIFO queue be selected. Note that it is the triggering conditions for

the consumer operator that determine the type data stream(s) that exist between any two

operators.

43

Thus far, the data streams are modeled as a generic package con-

taining a queue procedure in Ada. This construction is not sufficient. The SS and DS

have generated a schedule for the time critical operators and this schedule is enforced to

ensure real-time constraints are met. Some operators do not have time critical con-

straints. These operators are called into the empty or excess time in the worst -ase

schedule for th time critical operators. It is possible that a time critical operator is the

consumer of data from a non-time critical operator. The time critical operator has pri-

ority and is scheduled to run by the SS on some repetitive cycle. The non-time critical

operator is fired. as convenient for the DS, in the excess time in the main schedule.

Suppose a non-time critical operator is called and is attempting to write to the data

stream, when it is interrupted by the DS in order to run a time critical operator. Also

suppose that the time critical operator is the consumer for the data from the non-time

critical operator. When the consumer attempts to read the queue, the results will be

uncertain.

This difficulty can be overcome by making the generic queue into an

Ada task. This task will be called a buffer task. The task is then enclosed as a generic

package which can be generically instantiated as before. The difference is that the pro-

ducer and consumer operators will use entry calls to write to or read from the buffer.

In this way, once the buffer task is called, whatever operation is taking place on the

buffer must be allowed to complete before an interrupt can take place. The operation

time for any buffer task should be very short, so there should be little time penalty to

the scheduled operation of the program. On the other hand, buffer operation is pro-

tected from interruption and the operators are unlikely to get uncertain results from

reading them. Appendix C, part B, contains a listing for the Ada code to implement the

two types of buffer tasks, SAMPLED STREAM and FIFO.

(2) Buffer Task Selection. How does a data driven operator know that

the data stream (buffer) has new data, and that it should therefore fire? The buffer al-

ready contains a Boolean flag to indicate that it has been updated (either written to or

read from). However, now that it is a task, an entry call must be made to access the

Boolean flag. After finding the state of the flag, the consumer operator would then need

to execute a task entry to access the actual data in the buffer. This would be

44

inconvenient. A simpler method would be to apply a similar Boolean flag to each pro-

ducer operator of a NDF data stream. This would be an Ada in/out parameter to the

producer procedure. The consumer procedure would incorporate a conditional guard to

test the state of the Boolean in/out parameter of the producer. If the condition of the

flag indicated that the producer has executed a write operation to the buffer since last

read, the consumer would reset the variable to the state indicating that the data has not

been updated and would then execute an entry call to the buffer(s) in order to fire itself.

(3) Buffer Length Selection. It may be asked why a buffer length of size

one has been chosen to implement all buffers. The choice of buffer length is arbitrary

in any case. Figure 13 on page 38 illustrates the source of the problem. Suppose a de-

signer builds a system which contains both periodicity constraints and data flow control

as in the figure. As previously discussed, the SS will generate a schedule based on

periodicity and will also conduct a topological sort for control based on NDF. If the

two schedules happen to match then the system will operate. If they do not, then the

system is likely to fail. The SS will still allow the compilation and operation of the

program based on the periodicity constraints. This will allow the designer to see the

failure and decide on necessary changes and design alterations to make the program

work. Figure 13 on page 38 shows the failure of the program will occur on the second

time C attempts to fire. In this case buffer length has no effect on the operation or

failure of the program. However, it is possible that a combination of various buffer

lengths, periodicity constraints, and NDF constraints might operate correctly for some

length of time before failing.

Figure 14 on page 46 shows a case where operation of the buffer is

uncertain in the presence of both periodicity and NDF constraints. In this case, the fact

that we have chosen a buffer of length one ensures that very little runtime will be re-

quired to reveal the instability of this design. Since one objective of the CAPS archi-

tecture is to save development time, it is important to reveal errors in design quickly in

testing. By selecting buffers of length one throughout the prototype, we ensure that

flawed designs, such as the one in Figure 13 on page 38 and Figure 14 on page 46 are

revealed after a very short amount of run time. In general, a flawed design will fail

eventually no matter what length buffer is chosen. Since the buffer length is an arbitrary

45

period - 15 period -20

calling schedule for C

I I 1, - 1 0

0 20 40 60

calling schedule for B

0 15 30 45 60

B writes b at 15 - C reads b at 20

B writes b at 30 - C reads b at 40

B writes b at 45 -

now B attempts to write b at 60 -
and C attempts to road b at 60 -
success or failure of this operation is
uncertain - failure Is likely and the
design Is poor

Figure 14. Uncertain buffer operation

choice, it is better in the CAPS to ensure rapid failure of poor designs. A buffer length

of one will ensure this selection.

(4) Buffer Selection Conflicts. Another problem which arises in buffer

selection is illustrated in Figure 9 on page 31. In this case we have the decomposition

of an operator into three lower level operators. The designer will enter a specification

for both the top level operator A and for the lower level operators BB, CC, and DD.

Suppose operator A includes the tokens TRIGGERED BY ALL a. Also suppose that

operator BB does not contain the TRIGGERED BY ALL tokens. When the TL selects

46

a buffer task for A, it will instantiate a FIFO buffer task to implement a. For BB, it

would select a sampled stream task to implement a'. Although, a and a' carry the same

data, and they have not been implemented with the same type buffer. The TL does not

check inheritance rules. In operation data would be placed onto a and would then be

passed to a' and into BB. The results of this translation will be uncertain. It may

present no difficulty or may behave erratically. The user must prevent this type error

by ensuring that operators which result from the decomposition of higher level operators

have the same triggering conditions at the input in order to prevent the buffer mismatch

just demonstrated. This difficulty only arises for lower level buffers which mirror the

input buffers of the highest level operator of which they are a part. This is true because

the type buffer required at any point in the system is determined by the triggering con-

ditions of a consumer operator. Therefore, decomposition rules do not affect the spec-

ification requirements of operators CC and DD in Figure 9 on page 31. However, if A

is TRIGGERED BY ALL a, then BB must be TRIGGERED BY ALL a'. It is a rule

which the designer must enforce at this point. A utility similar to the C language lint,

could be developed to check for this type inconsistency and incorporated into the ESS

as an automatic part of the prototype translation, compilation, and export facility.

(5) The State Buffer. A final difficulty in data stream implementation is

that of PSDL state variables, designated by the token STATES INITIALLY. Each state

variable will have its own buffer task. An example is seen in Figure 9 on page 31.

Operator CC is a state machine. It has a state variable which is transmitted along buffer

task d. The value of the data type traveling along d must have some initial value. That

value is found in the STATES INITIALLY statement in PSDL. To insure the correct

initial value for the state variables in the program. buffer task d must be loaded with the

correct value prior running the prototype. An Ada procedure called PRELOAD will be

produced by the TL for all PSDL prototypes. It will contain a series of statements to

put the correct initial values into the appropriate buffer tasks. If there are no state

variables in the program, the procedure will simply be empty. The SS will always call

PRELOAD before the execution of any schedule it creates for the prototype. The pre-

loading procedure will not be part of the schedule proper.

47

It will run one time only to initialize the state buffers and will not be run again unless

the prototype program is restarted from the beginning.

c. User Declared Data Abstractions

Already mentioned is the fact that all user declared types will be placed in

an Ada package which will be used throughout the program. The listing for such a

package is found in Appendix B, part C. This method allows the use of private types in

the generic buffer task. At instantiation, the particular type variable to be sent through

the buffer is declared. The actual description of the type is in the variable package. This

package requires only an Ada specification part since it does not imrpIcment anything

itself. In addition to user declared types, all other variables which would appear in the

specification part of the Ada implementation will be placed in this same package. This

technique is a useful Ada design tactic. It is especially useful in programs where ranges,

intervals, delta values, or constants need to be assigned to variables, types, or subtypes.

It insures that when variables need to be changed in a program, they can be found

quickly and changed. There is no need to worry that a particular instance of the variable

was overlooked somewhere in the program. In real-time systems such assignments of

ranges, delta values, and constants may be seen to be quite common. For example, in

an engineering plant control system, fixed point numbers might be employed to describe

temperature measurements. These would have a particular delta value, perhaps .1 de-

gree centigrade. The accuracy required might result from engineering considerations

such as available sensor accuracy or the criticality of the system. If the program were

written to accept data from a sensor of. 1 degree centigrade and a sensor was needed and

eventually developed which was accurate to .01 degree centigrade, the program would

have to be modified to reflect the new delta value of .01. If the package technique had

been used in program development, the effort required for the change would be minimal.

A single point in the program would be adjusted and the modification would be com-

plete. Lacking the package technique, the entire program listing would have to be ex-

amined to ensure a correct change. CAPS is thus developing Ada code which is easily

maintained and modified,

48

d. Timer

The TIMER module must be implemented. The purpose of TIMER is to

measure elapsed time between two events, the length of time an operator has been in a

particular state, or to act as a conditional guard for operator firing. The four primitive

operations for the timer are START, STOP, RESET, and READ. It will use the Ada

standard package CALENDAR to access the system clock. The timer will have a

Boolean run switch.

At START, the Boolean run switch will be set to true, the system clock read

and the value of the reading stored as the initial starting point. At some time later a

READ is performed. The system clock will be read and the value of the initial reading

subtracted from it tv calculate the elapsed time. The initial value will not be changed.

Actual clock time is not output. Elapsed time is output. At STOP, the system clock is

read and the value stored in a simple array. The initial actual clock time is not output.

Elapsed time is output. At STOP, the system clock is read and the initial reading is

subtracted from the reading at STOP and the value output as the TIMER value. The

reading thus obtained is stored as the grand total time elapsed. At a subsequent

START, the system clock will be read and written over the old value. The grand total

will not be disturbed. At another STOP, the new elapsed time will be added to the grand

total and the will be output as the elapsed time. The RESET operation will stop the

timer and return all timer values to the zero state. TIMER will be an Ada generic

package. It can be instantiated wherever needed in the prototype very easily. An ex-

ample of an Ada package to implement TIMER is found in Appendix C, part C.

3. Advantages of The Ada Implementation of PSDL Constructs

The CAPS utilizes the relatively simple PSDL design and specification language

to describe prototypes. It creates Ada source code for an operational prototype which

can be compiled and run tested. It utilizes an automated translation facility to produce

this code. It takes advantage of the powerful generic construct in Ada to simplify

translation. The resulting code uses packaging of data types to simplify translation and

program maintenance. Use of private types supports representation hiding. Since PSDL

data types are immutable, it is necessary to utilize a strictly typed language to implement

them. Otherwise the protection against unpredictable side effecting afforded by the

49

immutable PSDL data types might be lost in translation. Ada provides the strong type

checking required. A similar observation can be made regarding the PSDL prohibition

against global variables. CAPS combines the powerful features of Ada and PSDL to

provide an effective tool to support the rapid prototyping methodology.

D. TRANSLATOR DESIGN AND CONSTRUCTION

1. The KODIYAK System

A few words should be said regarding the design and construction of the trans-

lator itself. The translator is created using an automated translator generator called

KODIYAK. KODIYAK was developed by Robert Herndon at the University of

Minnesota as a doctoral dissertation. [Ref. 241 It is available as a research tool and is

quite effective. The system is based on Knuth's work in attribute grammars. It utilizes

a version of Jalili's algorithm to evaluate the semantic tree it creates when generating the

translator. The tool incorporates a file called K as a pre-processor to the LEX

[Ref 271 and Yacc [Ref 281 tools in the UNIX operating system.

The process of translator production and usage is illustrated in Figure 15 on

page 51. To produce a translator with KODIYAK, the user must create a source file.

This file contains a listing of the terminal and non-terminal tokens of the source lan-

guage to be translated. It also contains a listing of the valid attributes which each token

may take on, as well as any precedence relationships which may be required to properly

evaluate ambiguous cases in the grammar. Finally, the file contains a listing of attribute

equations. These equations describe the relationship between the source language (in

this case PSDL) and the target language (in this case Ada). The translator generator

system, KODIYAK, utilizes these equations to produce a translator in executable C

code. The translator thus created is an executable program. By running this program

with a text file in the source language as input, an output file is created which contains

the equivalent code in the target language. A complete listing of the translator generator

source file for the PSDL to Ada translator is found in Appendix D.

50

ATTRIBUTE EQUIATIONS

AG TOOL

i. PRE-PROCESSOR

2. LEX

3. Yawc

TRANSLATOR
FROM PSOL
TO Ada

Figure 15. Translator construction and usage

51

IV. GENERAL APPLICABILITY TO TELECOMMUNICATIONS

SOFTWARE SYSTEMS

What is the relationship of this research to Naval telecommunications systems and

software? Current DOD policy indicates that software for embedded computing systems

will be written in Ada or converted to Ada, although the application of this policy is left

to the individual services [Ref. 29 p. 71-72; Ref. 301. Embedded systems are those

computers which form an integral part of a larger system, such as a communications

switching processor, a missile guidance system, or a manufacturing process control

computer [Ref. 12 p. 3]. Naval telecommunications systems are embedded systems and

therefore are subject to this policy. No current Naval telecommunication system is

written in Ada. Naval Data Automation Command (NAVDAC) has expressed an in-

terest in the development of software tools and techniques to improve productivity in the

maintenance and production of Navy software systems [Ref. 31]. This thesis addresses

the creation of a software tool designed to improve the productivity level and efficiency

with which Ada software can be produced. It also demonstrates, coincidentally, the

application of several existing software engineering tools and techniques which can be

used to address the conversion to Ada or the development of software components for

future systems.

A. SOME CURRENT NAVAL TELECOMMUNICATIONS SYSTEMS

Table 1 on page 53 [Ref. 321 summarizes some information regarding several cur-

rent Navy telecommunications systems. These are the Common User Digital Informa-

tion Exchange System (CUDIXS) and the Naval Modular Automated Communications

System (NAVMACS). The annual maintenance cost figure cited is for the software

system in each case. No hardware maintenance costs are included. The maintenance

costs for NAVMACS V5 and V5a is unknown as the systems are still undergoing de-

velopment. Not listed in the table, is the development costs for the systems. Numerous

government and private laboratories and corporations participated in the development

of these systems over an extended period so that the development costs are not easily

52

Table I. A SUMMARY OF SOME CHARACTERISTICS OF CURRENT NAVY
TELECOMMUNICATIONS SYSTEMS AND THEIR SOFTWARE

NAVMACS Family
CUDIXS VI V2 V3 V5/5a

Annual Maintenance Cost S500K S200K $250K $500K unknown

IOC 1975 NOV 79 APR 80 DEC 76 (1)

Required Memory 64K 64K 64K 128K (2)

Code Size (Lines) 120K 49K 54K 90K (3)

Language ULTRA-16, the 16 bit assembler code for the
AN/UYK-20 computer which is the basic hardware unit
for these systems

Operating System none none none MOS (4) (5)

Constraints CUDIXS must maintain precise timing to properly
operate within the receive/transmit windows required
by link protocols. NAVMACS family, due to heavy
loading of the system, concentrates on efficient use of
system resources such as central processor unit and 1/0
capacity.

(1) NAVMACS V5 is being developed in two phases IOC for Phase A was JUL 83.
IOC for Phase B was JUL 86. IOC for V5a is expected to be OCT 88.

(2) NAVMACS V5 is a three computer system. Main computer memory is 256K.
It can operate in degraded mode in 192K. The remaining computers require
64K. One will normally have 256K for fallback purposes.

(3) Code size by lines does not accurately reflect the presence of comments and the
extensive use of macro instruction statements. Current size is 309,000 (decimal)
16-bit words.

(4) MOS = Modular Operating System

(5) NAVMACS Operating System (10C). This is a highly modified and enhanced
version of the MOS used in the V3.

53

determined. An examination of the initial operational capability (IOC) dates for the

systems makes it clear that Ada was not a feasible choice for the development of the

software for these systems, since Ada was not standardized until 1983 [Ref. 33]. It is

also clear that there are hardware limitations on the size of code which can be tolerated,

due to the small memory capacities available in the AN/UYK-20 computer which is the

central processor for all the systems listed. Note that the code is very large in terms of

number of instructions (or line count) albeit very compact, owing to the use of assem-

bler language. NAVMACS V5 and V5a use up to three AN/ UYK-20 computers, while

CUDIXS and NAVMACS VI, V2, and V3 are single processor units. The various

versions of the NAVMACS family differ in the variety and quantity of capabilities and

services provided to users by the system. The VI and V2 are typically found on frigate

and destroyer size ships, while the V3 is reserved for cruisers, large amphibious ships,

large supply ships, and flag configured ships. NAVMACS V5 is found only on carriers

and large command and control chips.

The software for all systems is written in assembler language (ULTRA-16, the as-

sembler language native to the AN/UYK-20 computer). As many common elements of

the developed assembler code as possible have been used among all the systems

[Ref. 32 encl. 3]. The software for the V5 has also been developed to operate on the

AN/UYK-44 computer [Ref. 32: encl. 31.

B. SOME PROPOSED NAVMACS FOLLOW ON SYSTEMS

There is currently no formally accepted follow on to these systems. Initiatives to

enhance and improve NAVMACS exist. Two approaches to proposals for follow on to

NAVMACS will be briefly presented which will serve to illustrate possible applications

for CAPS. Some possible opportunities for the application of tools and techniques on

which CAPS is built will also be suggested.

I. NAVMACS Model II

There is an idea for a follow on system called NAVMACS Model 1I (afterward

referred to as Model II) [Ref. 34]. Table 2 on page 56 is a listing of typical services

found in current NAVMACS systems and the proposed additional services for

NAVMACS Model 11 [Ref. 34: pp. 15-161. The Model II proposal envisions a single

54

type of computer and software package which could be used in many different applica-

tions by changing the peripheral suites attached to the central processor

[Ref. 34: pp. 28-34]. The Model II envisions the use of some "smart" peripherals.

These would include:

* Programmable Front End processors to interface:

I. circuit cryptos

2. system computers

3. offline storage devices

4. operator interface devices

* remote terminals for message preparation and distribution [Ref. 34 : pp. 17-22]

The Model 11 would use data display units at operator terminals vice control

teletypes. This would speed message entry, screening, and distribution. The terminal

".'cu!d provide zome means to ensure correct format and entry of information during

message preparation [Ref. 34: p. 12]. This might take the form of message templates

or canned message formats. Remote terminals in non-mission critical areas might use

non-development items (NDI) [Ref. 34 p. 211. "NDI is usually off-the-shelf or

commercial-type products, but may also include equipment already developed by or for

the Department of the Navy, or other military services or foreign r-ilitary services

[Ref. 351.." IOC for a follow on system might be the mid 1990's [Ref. 32 J.
2. Unified Network Technology

Unified Network Technology (UNT) and Communication Support System

(CSS) are current initiatives to improve and advance the state of the art in Naval com-

munications systems. UNT anticipates the creation of communication packet networks

which will have flexible topology. These networks would provide most efficient use of

existing and future communications systems by allowing routing of communications

through any available communication media in an automated packet network. Present

systems involve the use of dedicated links and dedicated hardware systems. This can

result in inefficient use of communications resources as some media remain idle while

other media is heavily loaded. UNT would use automated means to select the available

media and use it transmit communications traffic. The CSS comprises the shipboard or

shorebased network controllers and interface units to establish connectivity between

55

Table 2. TYPICAL FUNCTIONS FOR NAVMACS AND PROPOSED
NAVMACSMODEL II

Current Function Description ... VI V2 V3 V4 V5

Up to 4 Fleet Broadcast Circuits .. x x x x x
Up to 4 Full Period Termination Circuits x x x
IXS Subscriber Capability .. x x x x
Flexible Circuit Definitions .. x x
System Control by Displays .. x x
On-line M essage Composition ... x x x
Long Term Msg Storage/Retrieval .. x x x
Data Base Storage/Retrieval x x
Rem ote Term inal Sites ... x x
Data Base For Onboard Organization x x
Automatic Onboard Delivery .. x x
Duplicate Message Processing .. x x
Automatic Circuit Selection and Relay x x
Additional Model II Functions ... V2 V3 V4 V5
Tactical CUDIXS (Ship-Ship OTO's) x x x x
Add System Control by Displays x
On-line Composition With Formats x x x x
Flexible Circuit D efinitions ... x x x x

(including CUDIXS broadcast, LAB, NATO circuits
fleet broadcast, FPT, automated nets)

R em ote Sites .. x x
A dd M ore Rem ote Sites .. x x
Flexible Configuration of Remote Sites and Circuits x x x x
Increased On-line Message Storage x x x x
Automated HF Net Subscriber .. x x x x
A utom ated H F N et Control ... x x
Semi-Autom atic Distribution ... x x
Improved Long Term Message Storage and Retrieval x x x x
Im proved D uplicate Search ... x x
Canned M essage Composition ... x x
Decrease Msg Transmission Delays x

users by employing the various hardware resources available. These systems approaches

to communications will be software intensive. Distributed network control, flexible

network topology, and adaption to changing communications loads will require soft-

ware control. CAPS could be utilized in the development of such software.

56

C. POSSIBLE CONTRIBUTIONS TO TELECOMMUNICATIONS FROM CAPS

RESEARCH

Current budgetary uncertainties, changing threat and mission requirements,

changing technology, and long developmental lead times will certainly impact any future

systems. As uncertainty is inherent in any discussion of future technology applications,

it is only possible to suggest several possible research avenues arising from CAPS re-

search, which might be applied to telecommunications software systems problems.

I. Rapid Prototyping and CAPS

It is likely that future systems will seek to provide more and faster service to

users by automating many more functions. Automated functions implies the use of

computing systems and software. Software requires development and the first step in

software development is definition of the functional specifications. Rapid prototyping

methodology directly addresses the early, precise definition of functional specifications

so that full scale development of the system can proceed. CAPS offers a tool to imple-

ment Ada program prototyping and design in a rapid prototyping environment. Once

fully implemented CAPS can be applied directly to the development of new telecommu-

nications software systems.

New guidance under Secretary of the Navy Instruction 5200.37 [Ref. 36] de-

fines acquisition policy for software intensive command and control information sys-

tems. This policy applies to those research and development programs in which software

cost represent a substantial fraction of the total system development costs (more than

60 percent) [Ref. 36]. Specifically addressed are the use of software prototypes to sim-

ulate important interfaces and to perform the main functions of an intended system

without strict edherence to the final standards in hardware, speed, size, or cost con-

straints required of the finished system [Ref. 361. The CAPS system as currently

planned will provide system simulations of precisely that type. The CAPS system,

however, aims to provide simulations which do conform closely to any real-time con-

straints required of the proposed software system. l-urthermore, CAPS implements the

rapid prototyping paradigm, offering demonstrations for the customer. This meets the

requirement to promote ". . . effective interaction between the user and the developer

'Ref. 36J." The policy to promote early delivery of command and control information

57

systems software products through rapid prototyping can be met through the applica-

tiox. of CAPS. CAPS could also meet the need to reuse as much existing software as

possible, and the prototypes produced will be written in a high order language (Ada)

[Ref. 361.

2. Reuseable Assembler Code

A generally available featui'e in Ada compilers is the ability to import assembler

code to implement sub-program bodies where speed of execution, or compactness of

code is a concern. CAPS will use retrieval of reuseable software modules to speed pro-

totyping. These reuseable modules are expected to be Ada code, but could be sections

of assembler code where necessary. So long as Ada compilers are available for the target

machine, the assembler code already written for that machine could be reused. There-

fore, the question of conversion to Ada is not only, "Should the systems be converted

to Ada?; "but also, "How much of the existing code needs to be replaced?" Functional

speciflcations for existing systems are understood (presumably) empirically since the

systems exist and are operational. Given the functional specifications, they could be

expressed conveniently in FSDL and input into CAPS to generate an Ada prototype,

which could be proofed, then finished out using Ada or assembler to implement the Ada

subprograms. Several additional questions also arise including:

• Can the assembler code be appropriately decomposed into modules?

" Can the assembler code modules be described by normalized specifications within
the software base?

" Can the functions of the assembler code be decomposed so that part of the system
can be implemented in Ada and the current code reused?

" Does there exist an Ada compiler for the AN/UYK-44 computer and for that
matter, what will be the next generation communications computer?

" What costs are associated with such an approach as opposed to implementing the
system entirely in Ada?

3. Subordinate Tools And Techniques

a. Translators

Subordinate to the overall CAPS is the technique of developing and utilizing

automated translator generators to produce automated translators. In principle, this

approach could be applied to the conversion of existing programs in any language into

58

any desired implementation language. Thus it may be possible to translate current as-

sembler code software directly into Ada. It would be necessary to examine the issues

of cost and feasibility of such an approach. It would also be neccesary to empirically

demonstrate the concept and to produce a formal definition of the relationship between

the two languages to ensure correctness in the final product.

b. Editor Generators

The Model II envisions the use of templates or preformatted message

blanks for preparation of messages for transmission on electronic terminals. This facility

currently exists in some instalations of NAVMACS and CUDIXS. In CAPS, a similar

capability is envisioned. It takes the form of a syntax directed editor for PSDL. This

editor would understand the correct syntax and usage for PSDL and would assist the

operator to enter a syntactically correct PSDL prototype into the system. There exist

several automated application generator facilities to create such "smart" editors

[Ref. 17: pp. 12-14]. The approach in CAPS will be to utilize such a generator to create

the syntax directed editor for CAPS. It may well be feasible to apply such an editor

generator to generate editor facilities which "understand" the correct format for various

types of Naval messages. Generation of custom editors for general message or struc-

tured messages (JINTACS, et.al.) might be possible. These techniques are incidental

to the central thrust of CAPS and this thesis, which is to create an integrated system of

tools for the generation of Ada applications.

c. Network Simulations

CAPS models software systems as systems of operators communicating via

data streams. Each data stream in the CAPS could be a FIFO queue or a sampled

stream. Each operator may have time constraints and conditional input or output.

Thus, a CAPS model closely resembles a petri net, a system of nodes connected by

communication paths. In principle, the basic elements of CAPS could be utilized to

model and study the behaviour of networks. The data streams which now have queue

length one, could be easily modified to provide generic queues with length n. Thus it

may well be possible to use CAPS as a tool to model various network architectures, to

provide operations research simulations of any network problem. Statistics collected

from the run time profiler could provide insight into questions of network stability,

59

throughput, and possible choke points. The graphic user interface would provide a

pictoral representation of the network. The syntax directed editor and the software base

management system would simplify construction of network models.

60

V. CONCLUSIONS AND FUTURE RESEARCH POSSIBILITIES FOR

CAPS

It is feasible to describe a prototype in PSDL and to use an automated facility to

translate the prototype into Ada. The present translator lays a sound foundation for

further development. It implements and recognizes the full syntax of PSDL as published

by Luqi in her Ph.D. dissertation [Ref. 191. The fundamental conceptual design imple-

mentation of the major PSDL syntactical constructs has been completed and docu-

mented. The translator produces rudimentary Ada code for interconnection of reuseable

software program modules. Several additional research possibilities exist. First, the

current translator is an empirical demonstration of the capability. Therefore, it should

not be expected to function properly in all cases. Work must be undertaken to establish

a rigorous, formal definition of the relationship between the syntax/semantics of PSDL

and the syntax/semantics of Ada. Once such a rigorous definition has been produced,

it must be applied to the translator to produce a facility which works for general cases.

Second, Ada is a robust language with a large syntax. PSDL is also a robust lan-

guage, but has a very small syntax. Can PSDL effectively describe all (or most) of the

constructions possible with Ada? This is similar to the formal definition problem. It

may be necessary to define certain PSDL constructions and specify the Ada construction

used to implement it in much the same way as Timer, Operator, and Data Stream have

been specified in this thesis. It may also be necessary to specify that certain Ada con-

structs cannot be adequately represented in PSDL. This is unlikely; however, imple-

mentation of some Ada constructs may require highly sophisticated versions of the

translator.

Third is the issue of code optimization. Some programs may require optimization

for speed of execution, while others require optimization for code size. Can the trans-

lator be made to generate Ada implementations based on optimization criteria?

Fourth, the Static Scheduler (SS) uses a pre-processor written in Kodiyak to extract

information about real-time constraints for various operators. This information is used

61

to generate the static schedule for program operation. Kodiyak provides the facility to

define separate sets of lexical definitions and attribute equations which apply in specified

cases. Thus the pre-processor should be integrated into the Translator. This would

eliminate the pre-processor as a single entity in the Execution Support System and sim-

plify the integration of the Translator, Static Scheduler, and Dynamic Scheduler.

Finally, the Translator, Static Scheduler, and Dynamic Scheduler must be integrated

into a single tool, the Execution Support System, which can be integrated into CAPS.

62

APPENDIX A. PSDL GRAMMAR SUMMARY

Several conventions are used for symbology in the grammar. [Square Braces] in-

dicate optional items. { Curly Braces } indicate items which may appear zero or more

times. Bold face type indicates a named terminal symbol which must appear in the

program listing the programmer writes. "Double quotes" indicate character literals

which must appear in the program listing. The "I" vertical bar indicates an exclusive-or

selection. In this case the programmer selects one and only one of the items separated

by the vertical bar.

As an example, the token timingjnfo is one of six mutually exclusive possibilities

which may define the attribute token. The attribute token may appear zero or more

times to define the interface token, which is a required attribute of the operator spec

token. Timing_info, if selected for attribute, may be empty, or it may contain one or

more of the optional tokens allowed to define timing info. Each of these tokens may

appear no more than one time for a given instance of timing info.

psdl = { component }

component I datatype
I operator

datatype type id type spec typeimpl

operator operator id operatorspec operator imp1

typespec = specification (typedec1] {opspec-list) [functionality] end

opspec list = operator id operatorspec

operator spec = specification interface [functionality] end

interface = {attribute [reqmts trace])

attribute = generic_param
input
output
states
exceptions
timing info

63

generic_param = generic typedecl

input = input typedecl

output = output type decl

states = states typedecl Initially expression-list

exceptions = exception id-list

id list = id { ', id)

timing info = [maximum execution time time]
[minimum calling period time]
[maximum response time time]

time number [unit]

unit = microsec I ms I sec I min I hours

reqmts-trace by requirements id-list

functionality = [keywordsl [informal-desc] [formaldesci

keywords = keywords idjlist

informaldesc = description "{' text "}

formal desc = axioms "{ text)"

typejimpl = I implementation Ada id
I implementation typename { op impllist } end

opimpljlist = operator id operator impl

operatorjimpl I implementation Ada id
I implementation psdl-impl

psdljimpl = data flow-diagram
[streams]
[timers]
[controlconstraints]
[informal-desci
end

data flow diagram graph { link }

link -id ". opid "->" id

opid = id [":' time]

streams = data-stream typedecl

type decl = id-list ":" type-name {i" idlist Y: typename }

typename = lid
lid "[" typedecl ']"

timers - timer id list

controlconstraints = control constraints (constraint }

64

constraint operator id
[triggered [trigger] ["if predicate] [reqints trace]
[period time [reqints trace] I
[I'inish within time ireqmts -trace]]I
(output id -list if predicate freqmts-tracel I
(exception id [if predicate] [reqmts trace]
{timer-op, id [if predicate] [reqmtsT trace]}

timer-op = I start I stop I read I reset

trigger = Iby all id Ilist
Iby some id-list

predicate = Inot predicate
Ipredicate and predicate
Ipredicate or predicate
Iexpression list
I id ':" id list

expression-list expression {"'expression)
expression = Inumber

constant
l id

typeyname " id "(" expression list ")

65

APPENDIX B. DIAGRAMATIC REPRESENTATION OF PSDL

The folowing diagrams present a tree structured breakdown of the PSDLlanguage

as applied in the translator. Each section is numbered with a large arabic numeral inside

a circle in the lower left comer. This is a 'key' number. Transitions between 'key'

sections are marked as lines terminated with a capital letter and one or more 'key'

numbers. For example, the non-terminal symbol, data type, is found under 'key"

section 1, as a possible representation of the non-terminal symbol, component. The

transition to a section with more detail on data-type is marked as B,3. This means go

to the line marked B under "key' section 3. Moving to that section leads to the tree

structured breakdown of the non-terminal symbol, data-type, into the terminal symbol,

TYPE, followed by the non-terminal symbols, id, typespec, and typeimpl.

start

B,3 0,5

aper~toporalor

= OPERATOR .1,11 ope¢WWo¢PW opWakanp

: SPECIFICATION Ierba tunmeasft ENO0 I I
SP,9 C,31 1

A.2 F,4

66

CL LC
>.~ z .L

I L* c 0

CL-)('- w
w
2

CL2

R22
l, CL ; ..

0.'

~S ~ .- CL

0 m to ~ *

8 .
W ~ 67

3i

66

CC
z0

0

IA-

0 0.

0 CL

C-j

.2

68

No

o .-,.-

.

z

0

Co I
0 0 I

.2L

0 .0

00

o 0

CO

00

z

cc I I I I OD

ww
a'

I-~ 0

-69

L(0

Ew W,
-0.

0. 0

0

0

a!z
0

0

z

w E
o

E

cl- 0
CL

'70

-fi

010

vi0

00

32 E
.21

CO

Jc,
cc-

a..

071-

S ~ ci) c

2u a.. - -

d VE

sr

Ce 0

0 W

1 - U

Ia 0 0

722

x

(0)

C E* E 022

I ~ 0
0 0 00.

0

cl CL

.2 1

CL

*<00

0.CL

0.0
0L

(00

z

73

<J
CC

-jLJ <

0

lo -j z

00C

Cu-

0.

74

APPENDIX C. ADA SOURCE CODE IMPLEMENTATION OF VARIOUS

PSDL CONSTRUCTS

A. GENERIC QUEUE MODEL

generic
type ITEM is private

package QUEUES is
type QUEUE (Size : POSITIVE) is limited private;
procedure CLEAR (TheQusue : in out QUEUE);
procedure ADD (Theltem : in Item;

ToTheQueue in out QUEUE);
procedure REMOVE (TheItem out Item;

FromTheQueue : in out QUEUE);
OVERFLOW;
UNDERFLOW : exception;

private
type LIST is array (INTEjGER range <>) of ITEM;
type QUEUE (Size : POSITIVE) is

record
TheItems : LIST (0.. Size);
TheBack : NATURAL := 0;

end record;
end QUEUES;

package body QUEUES is

procedure CLEAR (TheQueue
out QUEUE) is
begin
TheQueue.TheBack = 0;

end CLEAR;

procedure ADD (Theltem : in ITEM;
ToTheQueue : in out QUEUE) is

begin
ToTheQueue. Theltems(ToTheQueue. TheBack + 1) = Theltem,
TomheQueue.TheBack := ToTheQueue.TheBack + 1;

exception
when Constraint-Error =>

raise OVERFLOW;
end ADD;

procedure REMOVE (Theltem : out ITEM;
FromTheQueue : in out INTEGER) is

begin
if FromTheQueue.TheBack = 0 then
raise UNDERFLOW;

else

75

TheItem := FromTheQueue.Theltems(l);
FromTheQueue. TheBack := FromTheQueue. TheBack - 1;

end if;
end REMOVE;

B. GENERIC PACKAGES CONTAINING FIFO AND SAMPLED STREAM

BUFFER TASKS

1. FIFO Queue

generic type ELEMENT_TYPE is private;
package FIFO is

task FIFO_BUFFER is
entry CHECK (NEW_DATA : out BOOLEAN);
entry PUT (VALUE : in ELEMENT_TYPE);
entry GET (VALUE : out ELEMENT_TYPE);

end FIFOBUFFER:
BUFFERREADERROR,
BUFFER_WRITEERROR : exception;

end FIFO;

package body FIFO is
task body FIFO-BUFFER is
BUFFER ELEMENT_TYPE;
VALUE ELEMENT_TYPE;
NEWDATA_VALUE : BOOLEAN := false;

begin
loop
select
accept CHECK (NEW DATA_VALUE : out BOOLEAN) do
NEW_DATA := NEWDATAVALUE;

end CHECK;
or

accept GET (VALUE : out ELEENT_TYPE) do
if NEWDATAVALUE then
VALUE := BUFFER;
NEWDATAVALUE := false;

else raise BUFFERWRITEERROR;
end if;

end GET;
or

accept PUT (VALUE : in ELEMENT_TYPE) do
if not NEW_DATA_VALUE then
BUFFER := VALUE;
NEWDATAVALUE := true;

else raise BUFFER_READ_ERROR;
end if;

end PUT;
end select;

end loop;
end FIFO_BUFFER;

end FIFO;

76

2. Sampled Stream Queue

generic type ELEMENT.TYPE is private
package SAMPLED is

task SAMPLED_BUFFER is
entry CHECK (NEWDATA : out BOOLEAN);
entry PUT (VALUE : in ELEMENTTYPE);
entry GET (VALUE : out ELEMENTTYPE);

end SAMPLED_BUFFER:
end SAMPLED;

package body SAMPLED is
task body SAMPLED is

BUFFER ELEMENT_TYPE;
VALUE : ELEMENT_TYPE;
NEW_DATA_VALUE : BOOLEAN := false;

begin
loop
select

accept CHECK (NEW_DATA : out BOOLEAN) do
NEWDATA := NEW_DATAVALUE:

end CHECK:
or

accept GET (VALUE : out ELEMENT-TYPE) do
VALUE := BUFFER;
NEWDATAVALUE : false;

end GET;
or

accept PUT (VALUE : in ELEMENT_TYPE) do
BUFFER := VALUE;
NEW_DATA_VALUE := true;

end PUT;
end select;

end loop;
end SAMPLED_BUFFER:

end SAMPLED:

C. GENERIC PACKAGE IMPLEMENTING TIMER

generic

with CALENDAR;
use CALENDAR;

package TIMER is
StartTime : TIME;
ReadTime : TIME;
ElapsedTime - DURATION;
TotalElapsedTime : DURATION;
Run : BOOLEAN;

end TIMER;

with CALENDAR;
use CALENDAR;

package body TIMER is;

77

procedure START (StartTime: out TIME;
Run : BOOLEAN);

begin
if not Run =>
StartTime := CLOCK;
Run := True;

end if;
end START;

procedure STOP (StartTime : in TIME;
ReadTime : out TIME;
ElapsedTime : out DURATION;
TotalElapsedTime : out DURATION;
Run : in out BOOLEAN);

begin
if Run =>
ReadTime := CLOCK;
ElapsedTime := ReadTime "-" StartTime;
TotalElapsedTime := TotalElapsedTime 'Y' ElapsedTime;
Run := False;

end if;
end STOP;

procedure READ (StartTime : in TIME;
ReadTime : out TIME;
ElapsedTime : out DURATION);
TotalElapsedTime : out DURATION);

begin
ReadTime := CLOCK;
ElapsedTime := ReadTime "-" StartTime-
TotalElapsedTime := TotalElapsedTime '+" ElapsedTime;

end READ;

procedure RESET (StartTime : out TIME;
ReadTime : out TIME;
ElapsedTime : out DURATION;
TotalElapsedTime : out DURATION;
Run : out BOOLEAN);

begin
StartTime := CLOCK;
ReadTime := CLOCK;
ElapsedTime := 0.0;
TotalElapsedTime := 0.0;
Run := False;

end RESET;

78

APPENDIX D. PROGRAM LISTING FOR THE TRANSLATOR

The following is a listing of the Kodiyak input file which is compiled create the

translator. It is composed of three sections delimited by the %% marker. Comments

are indicated by the ! mark and extend to the end of the line. Backslash followed by t

or n follows the UNIX convention and stands for "tab" and "newline" respectively.

The first part of the file is the lexical definition section. The various lexical tokens

in PSDL are identified. In order to assist this definition, classes of lexical characters can

be defined. Such definitions are identified by the %deflne statement. Standard "Kleene*

closures are used throughout (i.e., () + indicates one or more, {)* indicates zero or

more). The solid vertical bar (I) indicates an "or" selection. The circumflex (shifted

6) in the definition for Char (character) indicates "all symbols except those immediately

following" (i.e., all except left and right curly braces). Left and right brackets between

two words indicates they are to be evaluated together as a lexical token.

The %% marker begins the second section. Here, the attributes for non-terminal

and some terminal symbols of the language are defined. Kodiyak allows either string

or integer type attributes. In this case all attributes are string type. Each non-terminal

(e.g., start) has one attribute, trn (shorthand for translation), of type string. All

Kodiyak translators have a start symbol which is used to indicate that the input file has

been completely reduced and output can begin. Terminal symbols can also have attri-

butes. In this case five terminal symbols have been assigned the opecial attribute

%text. This attribute returns the value of the input text which the terminal symbol

matched.

Section three of the Kodiyak file begins with the second %% marker. It is a repre-

sentation of the grammatical structure of PSDL. It begins with the start symbol. The

start syr7vbol cannot appear on the right side of any production rule. If it did, output

would commence even though the parsing tree of the input file would not have been

completely reduced. Each producton rule in the grammar is represented and attached

to each rule is an "attribute equation" surrounded by curly braces. The "attribute

79

equation' specifies what output is to be created when the corresponding PSDL pro-

duction rule is reduced. Within the 'attribute equation," square brackets surrounding

a series of items indicates the concatenation of the items. The solid vertical bar is used

to indicate alternate possibilities for a given production rule. This is an exclusive or se-

lection. It is also precedence ordered (i.e., top to bottom, the first rule which matches

is the rule evaluated). Care must be exercised here as some states are implied and not

explicit. For example, functionality has but one attribute equation. However, it has

an implied empty state, since all three of the non-terminal symbols which are part of the

production rule for functionality can have an empty state. Recursion and optional cases

are supported. The naming convention used in this translator is as follows:

* optname means the item is optional

* nameIlist means one or more of the item

* name_0_list means zero or more of the item

When compiled, a program of about 230 kilobytes in size is created. The compiled

program is C object code. Certain features are incorporated in all products created with

Kodiyak. The executable code recognizes the standard UNIX -h, help, switch and re-

sponds with the correct usage syntax and a listing of optional switches. The three most

useful are:

* -o outfilename, allows the naming of a file to receive Lhe output of the translator

-1, causes the translator to display each PSDL token as it is recognized

* -y, causes the translator to display each PSDL production rule as it is resolved

The last two switches are especially helpful in debugging an input program.

Idefinitions of lexical classes

%define Digit :[0-9]
%define Int : {Digit}+
%define Letter :[a-zA-Z_]
%define Alpha ([Letter}I(Digit))
%define Blank :[\t\nJ
%define Char :[-0}
%define Quote :["]

I definitions of white space

:(Blank}+

80

I definitions of compound symbols and keywords

GTE
LTE
NEQV "/="
ARROW " >"
TYPE :typeITYPE
OPERATOR :operator I OPERATOR
SPECIFICATION :specification I SPECIFICATION
END :endIEND
GENERIC :generic I GENERIC
INPUT :inputINPUT
OUTPUT :output OUTPUT
STATES :states I STATES
INITIALLY :initiallyINITIALLY
EXCEPTIONS :exceptions jEXCEPTIONS
MAX_EXECTIME :maximum(]execution[]time I MAXIMUM[]EXECUTION(]TIME
MAXRESPTIME :maximum(]response(]timeIMAXIMUM[]RESPONSE(]TIME
MIN_CALLPERIOD :minimum(]calling(]periodIMINIMUM[]CALLING[JPERIOD
MICROSEC :microsecIMICROSEC
MS :msIMS
SEC :secISEC
MIN :minIMIN
HOURS :hours IHOURS
BY :by[]requirements BY[]REQUIREMENTS
KEYWORDS :keywords I KEYWORDS
DESCRIPTION :description IDESCRIPTION
AXIOMS :axioms I AXIOMS
IMPLEMENTATION :implementationj IMPLEMENTATION
ADA :adaIAdaIADA
GRAPH :graphIGRAPH
DATASTREAM :data(]streamiDATA[]STREAM
TIMER :timerjTIMER
CONTROL :control(]constraints I CONTROL[]CONSTRAINTS
TRIGGERED :triggered ITRIGGERED
ALL :by[JallIBYC]ALL
SOME :by[]somelBY[ISOME
PERIOD :periodIPERIOD
FINISH :finish[]within IFINISH[]WITHIN
EXCEPTION :exception IEXCEPTION
READ :readIREAD
RESET :reset IRESET
START :startISTART
STOP :stopf STOP
IF :ifjIFNOT ::: if, lnot,, I ,,NOT,,
NOT
AND "&" I "and" "AND"
OR "I" ''or" I OR"
TRUE :trueITRUE
FALSE :falsej FALSE
ID : (Letter) (Alpha}*
STRINGLITERAL : {Quot el {Char)*{Quo te}
INTEGER-LITERAL :{Intl
REALLITERAL : {Int}". "(Intl
TEXT :"("(Char)*")"

81

I operator precedences
I %left means group and evaluate from the left

%left OR;
%left AND;
%left NOT;
%left <', >', , GTh, LTE, NEQV;

I attribute declarations for nonterminal symbols

start { trn: string; };
psdl (trn: string; 1;
component { trn: string; };
data -type { trn: string; };
operator { trn: string; };
typespec { trn: string;);
opttypedecl-llist { trn: string;);
type-decl-l-list { trn: string; };
type decl { trn: string; };
op-spec_0_list { trn: string; };
operatorspec (trn: string; };
interface { trn: string; };
attrib_0_list { trn: string; };
attribute { trn: string; };
generic-param (trn: string; };
input { trn: string; };
output { trn: string;);
states { trn: string; };
exceptions { trn: string; };
timinginf { trn: string; };
maxet { trn: string;);
maxrt (trn:string; };
mincp { trn: string; };
time t trn: string; };
unit { trn: string; j;
id list (trn: string; };
opt-reqmtstrace (trn:string; J;
reqmts-trace { trn: string;);
functionality { trn: string;);
opt..keywords f trn: string; };
opt-informaldesc { trn: string;);
opt_formal_desc (trn: string;);
keywords (trn: string; };
informaldesc (trn: string; };
formal-desc { trn: string; };
typeimpl { trn: string; };
op-impl_0_list { trn: string; };
operator_impl { trn: string; };
psdl-impl { trn: string;);
data-flow-diagram { trn: string; };
link 0-list (trn: string;);
link (trn: string; };
opid { trn: string; };
opt-time { trn: string; };

82

optstreams { trn: string;);
opttimers { trn: string; };
optcontrolconstraints { trn: string; };
streems { trn: string; };
typename (trn: string;);
timers (trn: string; };
control-constraints { trn: string; };
constraint_0_list { trn: string; };
constraint { trn: string; };
operator-name (trn: string; };
opttrig { trn: string; };
opt-trigger { trn: string; };
trigger { trn: string; };
optper (trn: string; };
opt-fin-w (trn: string;);
out_O_list (trn: string; };
except_O_list { trn: string;);
timeO list { trn: string; };
timer_op (trn: string; };
opt_if_predicate { trn: string; };
predicate_branch (trn: string; };
predicate (trn: string; };
expression_list { trn: string; };
optexpression { trn: string; };
expression_.list { trn: string;);
expression (trn: string;);
infix.op { trn: string; };
constant { trn: string; };

l attrbute declarations for terminal symbols

ID{ %text: string; ';
TEXT(%text: string; };
STRINGLITERAL(%text: string;);
INTEGERLITERAL{ %text: string;);
REALkLITERAL(%text: string;);

1psdl grammar

start
psdl

{ %output(psdl.trn); }

psdl
psdl component
{ psdl[lj.trn = [psdl[2].trn,component. trn]; }

I { psdl[l], trn ="

83

component

data..type
{ component. tn = datatype. trn;

Ioperator
{component. tn = operator. trn;

data_type
TYPE ID type..spec type..impl
{dat...type. trn =ftype ,ID. %textV"\a", type-spec. tin,

"\type..izpl. trn, '\n"];}

operator
OPERATOR operator-name operator..spec operator .impl1
{operator. tn = ["procedure ",operator.name. tin n, Iis; \n,

operator-.spec. tin, "\",operatorjimpl. trn' \n"j; 1

type-.Spec
SPECIFICATION opt...type_deci_1_list op...spec_.Q..list functionality END
{type...spec.trn = (opt..type..decl.list.tn,"\n",op spec_0_list. tin,

,\"functionality trn,' end; \n"];)

opt...type_deci-_ijist
type..decl-.ljlist
{ opt-.type..dcl_1_list. trn = type-.decl_1_list.trn;}

(opt...type.decl_1list.trn = ;)

type...decl_1_list
type_decl_1_list ' ,' type..decl
{type deci_..list[l]. tin = [type - ecl-l..list[2]. tm 5,

It\"tedl trn];
type.decl
{type-.decl..l-list. tin = type..decl. tin;)

type-.dec 1
id list ': ' type..name
{type_decl. trn = [id..list. trn, type-name. trn];}

op...spec_0_list OPERATOR operator-name operator -Spec
{ opspe...0...ist[l]. trn = [op-.spec_.O.ist[2]. trn,"\n procedure "

operator.name. tn ," is \n".
operator..spec. trnj;

(op...specOist.trn= ;}

84

operator..speC
SPECIFICATION interface functionality END
{operator..spec. trn = (interface. trn,"\n"it,

functionality. trn," end; \n"];

interface
attrib_0_list
{interface. trn = attrib_....list.trn;}

attrib_0_list
attrib-0-..list attribute opt..reqmts...trace
{attrib..Q..list~l]. tin = [attrib 0O_list[2.t trn, opt.r eqmts_t race. tin];)

(attrib,_0_list. tin = fill}

attribute
generic..param
{ attribute. trn = generic.param. tin;}
input
{ attribute. tin = input. tin;}
output
{ attribute. tn = output.trn;
states
{attribute. tin = states. tin;
exceptions
{ attribute. tin = exceptions. tin;

1timing-.info
{attribute, tin = timing..info. tin;}

generic..param
GENERIC type-deci
{generic..paran.trn =(Igeneric \n",typedecl. trn];}

input
INPUT type.decl
{input. tin = in t t type..decl. trn];}

output
OUTPUT type..decl
{output. trn = [1 out ",type..decl.trnJ;

states
STATES type -decl INITIALLY expression-list
(states. trn= ("procedure PRELOAD is; \n PUT ("type..decl. tin,

"\n", express ion- list. trn];}

85

except ions
EXCEPTIONS idjlist
{exceptions. irn ["~raise exception fIid-list. trn, W\nI];}

id~list
id,-list ',' ID
{ id.list~l]. trn C id..list2. trn," ID. %text)
IID

(id.list~l]. trn =ID. %text;

t iming..info
maxet
{timing..inf o. tn = maxet. trn;

Imincp
(timing-.info.tnn = mincp.trn;}

maxrt
{timing-info. tin =maxrt. trn;}

maxet MAX_EXECTIME time
maxet. tin = time. trn;

mincp
MIN.,CALIJPERIOD time
{mincp-tnn = time.tnn;}

maxint
MAX_RESP_TIME. time
{maxrt.trn = time.trn;}

time
INTEGER..LITERAL unit
(time. tn = CINTEGERLITERAL. %text, unit. lrn];}

unit
MICROSEC
(unit. tn = "\n";I

IMS
(unit. tin = Y\n";

SEC
funit. tn = \n";

MIN
funit. tin = 11\n"l;}

IHOURS
unit. tin = "\n";

unit. tin = "

86

opt..reqmts...trace
reqmts..trace
{opt-.reqmts-.trace.trn =reqmtstrace.trn;

{opt-.reqmts-.trace.tru = fillI

reqmts.trace
BY idjist fl
{reqmts-.trace. tin= H

functionality
opticeywords opt..informal-desc opt..fortnal-.desc
{functionality. tin = [opt-.keywords. tinn,opt.~informal..desc. trn3

optjformaldesc. tin)]

opt-..keywords
keywords
{ opt...keywords. tin keywords. trn;}

{ opt-..keywords. tin fill;

optjnformal..dese
informal-desc
(optjnformal..desc. tin = informaldesc. trn;)

(opt...informal..dese. tn t= l

opt-.formal-desc
formal_dese
(opt-.formaldesc.trn = formal..desc.trn;

{ opt-formal..desc. trn = fill~

keywords
KEYWORDS id_list
{keywords. trn ="\n"';}

infornal-.dese
DESCRIPTION TEXT
{informal..desc. tin = "\n"

formal-.desc
AXIOMS TEXT
{formal.desc. tin ="\n";

87

typejimp 1
IMPLEMIENTATION ADA ID
{ type..impl. tn = ["procedure ",ID.%text," is; \n"];}

IIMPLEMENTATION type..name op-impl.......ist END
{type-.impl. tn = a"V package DATA.TYPES is \n",type ame. trn,"\n",

"iend; \n]

op..impl-..Q.list OPERATOR operator.name operatorjimpl
(op...impl.....list(1.trn = will

{op-impl...Ojist(J. tn =fl

operator..imp 1
IMPLEMENTATION ADA ID
(operatorjimpl. tn = ("procedure ",ID. %text," is \n"];

IIMPLEMENTATION psdl-jmpl
foperator-impl. tn = [psdl-impl. tin];

psdljimpl
data...low..diagram opt-..streams opt-..timers opt...controlconstraints
opt informal..desc END iI psdl-.impl.tinn = (data flow..diagram. tr t "\n",opt streams. trn"r\n"f

opt timers. trn "\n' ,opt .control-constraints. trn,
"\',opt...informaldesc.trn," end;\n"]);

data.~flow..diagram
GRAPH link_0 list
{datajflow-..diagram.trn = ["\n-- Graphic representation: \n\t",

link...ojist
link...0.list link
{link..O.list[1.trn = [link...Q.list[2.trn," ",link. trn];

(link...Oist.trn = fill;

link
ID '.' opid ARROW ID
(link. tn = Copid. tinn, ".", ID[2]. %text,"_..", ID(l]. %text, "\n"]

opid
ID opt.t ime
{opid.trn = [ID. %text, opt.time. tn];

88

optt ime
: time
{ opt-time. trn = [": ",time. trn,"\n"];

{ opt-time. trn = "\n"; }

optstreams
streams
(opt-streams. trn = streams. trn;I I,
(optstreams. trn = ; }

opttimers
tirmers
(opt_timers.trn = timers.trn;

{ opt-timers. trn =t""; }

opt-control-constraints
: control-constraints

(opt-control-constraints.trn = controlconstraints.trn; }

{ optcontrolconstraints. trn = ; }

streams
DATA_STREAM type decl
(streams. trn = [task STREAM is new FIFO \n",

type-decl. trn,"; \n"];

type-name
ID 'C' typedecl_llist ']t
{ typename. trn = [ID. %text,"[",typedecl_l_list. trn,"]\n"];

I ID
(type-name. tn = ID. %text; }

timers
TIMER id-list
{timers. trn = ["package ",idlist. trn," is new TIMER; \n"] ; }

control-constraints
CONTROL constraint_0_list
{ controlconstraints.trn = constraint_0_list.trn;

89

constraint_0_list
constraint-0-lOist constraint m" ,

(cons traintOj1istC 1]. tra = [cons traint_0_l is t[2]. tn
constraint. tin];

{constraint_0_list. tin,=lt

constraint
OPERATOR operator_name opt-..trig opt-..per opt..fin..w out...Oiist
except-0-lOist time 0O list
constraint, tin = J(irprocedure ltoperator .name.trn,?t\nt",opt...trig.trn,

":\n"opt-.per.trn, \n ,opt-in.w. trn,"\n", out TT0 -list. trm
"\n",except-0-Q.lit.trn,'\n",time- 0_list.trn/ \n"];)

operator-name
type-name'. ID
I operator.nane. tin = [type...ame. tr:tt. "ID. %text];
IID

{operatom..name. tin = ID. %text;

opt-..trig
TRIGGERED opt..trigger opt..if..predicate opt...reqmts-.tmace
{opt-..trig. trn [opt-.trigger. trn,"\n",opt..if Mpredicate. tmn,"\n"

opt...eqmts..trace. trn, \n"];

(opt..trig. trn= ;

opt-.trigger
trigger
{ opt...trigger.trn =trigger.trn;

(opt-..trigger. trn =

trigger
ALL id..list
(trigger. tin = [(" if 't id...list.trn.t' and]}

ISOME idjlist i{trigger. tin = ["if ",id list trnt1 or";}

opt-..per
PERIOD time opt reqmts-.trace
(opt...per.trn = r\n";

fopt..per. tn ti=

90

optjfin.y
FINISH time opt-.reqmts..trace
{opt.fii...w. tn " 1\11";}

(optjfin.w.tinn - fill

out...Ojist
out_0_ist OUTPUT id_ist opt..if...predicate ogt-.reqmtstrace
{out...Ojist(1].trn = (out..O.List[2j.trn," PUT ',id.Aist.trn,"

opt..if.predicate. trn o"o ",opt...reqmtstrace. tru];}

{out-0-ist. trn =H

except....Oist
except_0_list EXCEPTION ID optif-predicate opt-reqmts .trace
(except-0-list~lJ. trn = [except...Ojist[21. trn, o RAISE ",ID. %text," "

{except_..list.trn=

time_0_list
timeQlist timer..pp ID optjf.predicate 0? t~reqmts..traceito
{time...Ojist(l]. tra = (time-O-list,21. tu, t ' ',timer-op. tn,

ID. %text,')\n ",opt..if..predicate. trn,"n "

opt-.reqmts,.trace. tin);}

{time...Olist. tn ;)

t imer..op
READ
{ timer.op. tin ("READ (3
IRESET

(timer..op. tn =("RESET ("];
START
{ timer..op. tin =("START C]

ISTOP
{timer..op. trn ["STOP C)

opt..if...predicate
IF predicate..branch
(opt-.if..predicate. tra = ("if ",predicae..branch. trn];

{opt-f.predicate. tn = f"ill

91

predicate..branch
predicate AND predicate %prec AND,
(predicate..branch. trn = [predicate(lJ. trl," AND "

predicate[2]. tin] ;)
predicate OR predicate %prec OR
(predicate..branch.tin = (predicatel]. tr, OR "

predicate[2). trn] ;)
NOT predicate %prec NOT
{ predicate -branch.trn = ("NOT", predicate. trl];
Ipredicate

{predicate..branch. tn = predicate. trn;

predicate
expression
{ predicate. tin = expression. tin;}

{predicate. tn = [ID. %text,: id-list, tin];)

expressionjlist
opt-..expressionl
(expression-list.trl = opt..expressiofl.tnl

opt-..express ion
expression ' expression_0_list epeso
{ opt-..expressionl. tru = [expression. trn," , xrs o__list. trn];)

(opt-.expression. tin = fil

expression_0_list
expression.0Ojist ',' expression
{express ion-0-lOist(l].tn = [express ion_0_list(23.tnn,"

expression. tin];)

{expression......ist.trn = lift?

92

expressionII
operator_name '(expression list)
{expression. tin = [" ,operator_name. trn

(expresionlist. tmn, ") \n"];}
operator-.name '=' constant %prec LTE'
{ expression. tn =[operator-..name. trn, " = ' constant. trn,r"\n"]);
operator.name <'constant %prec LTE
{ expression. tn = [operator.name. tin, "< ",constant. tmn,"\n"J;
operator-name '>' constant %prec LTE
{ expression. tn = [operator-name. trn, o > it constant. trn,"\n"];

Ioperator-name infix..op constant fl(expression. tn = Coperator.name. trn, ,"inf ix-op. trn,'
constant. tin, \n"];

constant

{ expression. tn = constant.trn;)
Ioperator-name I I{expression. tn = C= ",operator-name. trn," \n"];

infix.op
GTE %prec GTE
{inf ix-.op. tin=>;}

ILTE %prec LTE
{in fix..op. trn =":~

INEQV %prec NEQV
{infix.op. trn="1"

constant
TRUE
{ constant. tn = "true";}

IFALSE
{ constant. tin = "false";}

IINTEGER..LITERAL
(constant. tn = INTEGER...LITERAL.%text;}

IREAL_.LITERAL
(constant. tin = REAL_.LITERAL. %text;
STRING._LITERAL

constant. tn = STRING_.LITERAL.%text;

93

APPENDIX E. PROGRAM LISTING FOR TEST PROGRAM IN PSDL

The following test program is taken from the Ph.D. dissertation by Luqi which first

described PSDL [Ref. 191. It is representative of most features in the PSDL language.

It contains descriptions at several levels of decomposition of the proposed system. The

system envisioned is an embedded computer system for a medical treatment instrument

known as a hyperthermia system. It implements real-time control constraints (required
for safety of the patient as well as ensuring correct application of the theraputic tech-

nique). The system described would monitor and control the operation of a microwave

generator. The microwave generator would be used to generate a hyperthermia condi-

tion for the treatment of tumors in the brain. There is a critical temperature range which

would provide proper theraputic effect and yet remain safe for the patient. The system

has stringent shutdown time limits when either treatment is completed or the temper-

ature of the target tissues exceeds a limiting value. Obviously, there could be severe
penalties should the system ftil to function correctly. The time limits on startup and

shutdown and the precise timing of the treatment period are critical. Maintenance of
microwave power levels is critical to ensure correct temperature is maintained within a

narrow range. As such, this program illustrates many of the features of an embedded

system with real-time constraints. Since the program utilizes most of the features of
PSDL and is a real-time system, it is a convenient one to utilize to test the translator.

The Ada code produced thus far is elementary at best. As noted in the conclusion for
this paper, the formal relationship between PSDL and Ada must be established and

applied to the translator to ensure generality and correctness. Further, there is no li-

brary of reuseable Ada software modules from which to draw implementation code for
the various parts of the hyperthermia system. The implementation code for this sytem

would require development. The translator provides (as intended) interconnection code

for the software.

OPERATOR braintumortreatmentsystem
SPECIFICATION
INPUT patient-chart: medical-history,

treatment_switch: boolean
OUTPUT treatment-finished: boolean
STATES temperature: real
INITIALLY 37.0

94

DESCRIPTION
{ The brain tumor treatment system kills tumor cells
by means of hyperthermia induced by microwaves.

END

IMPLEMENTATION
GRAPH

DATA STREAM treatment-power: real
CONTROL CONSTRAINTS
OPERATOR hyperthermiasystem

PERIOD 200 BY REQUIREMENTS shutdown
OPERATOR s imulated-patient
PERIOD 200

DESCRIPTION (paraphrased output }
END

TYPE medical_history
SPECIFICATION
OPERATOR gettumor_diameter
SPECIFICATION
INPUT patient_4.hart" medical_history,

tumor_location: string
OUTPUT diameter: real
EXCEPTIONS no-tumor
MAXIMUM EXECUTION TIME 5 ms
DESCRIPTION
{ Returns the diameter of the tumor at a given location,
produces an exception if no tumor at that location.}

END

KEYWORDS patient-charts, medical_records, treatment-records,
lab records

DESCRIPTION
(The medical history contains all of the disease and
treatment information for one patient. The operations
for adding and retrieving information not needed by
the hyperthermia system are not shown here.}

END

IMPLEMENTATION
tuple [tumor_desc: map[from: string, to: real], ...

OPERATOR get-tumor-diameter
IMPLEMENTATION
GRAPH

DATA STREAM td: tumordescr
CONTROL CONSTRAINTS
OPERATOR map. fetch

95

EXCEPTIONS notumor IF not(map.has(tumorlocation, td))
END

END

OPERATOR hyperthermiasystem
SPECIFICATION
INPUT temperature: real, patient_chart: medicalhistory,

treatmentswitch: boolean
OUTPUT treatment-power: real, treatment_finished: boolean
MAXIMUM EXECUTION TIME 100 ms
BY REQUIREMENTS temperaturetolerance

MAXIMUM RESPONSE TIME 300 ms
BY REQUIREMENTS shutdown

KEYWORDS medical-equipment, temperaturecontrol,
hyperthermia, brain_tumors

DESCRIPTION
{ After the doctor turns on the treatment switch, the
hyperthermia system reads the patient's medical record
and turns on the microwave generator to heat the tumor
in the patient's brain. The system controls the power
level to maintain the hyperthermia temperature of
42.5 degrees C. for 45 minutes to kill the tumor cells.
When the treatment is over, the system turns off the
power and notifies the doctor.}

END

IMPLEMENTATION
GRAPH

DATA STREAM estimated-power: real
TIMER treatment-time
CONTROL CONSTRAINTS
OPERATOR start-up
TRIGGERED IF temperature < 42.4
BI REQUIREMENTS maximum-temperature
STOP TIMER treatmenttime
RESET TIMER treatment-time IF temperature <= 37.0

OPERATOR maintain
TRIGGERED IF temperature >= 42.4
BY REQUIREMENTS maximum-temperature

START TIMER treatment-time
BY REQUIREMENTS treatment_time, temperaturetoleranceOUTPUT treatmentfinished IF treatment..time >= 45 mmn

BY REQUIREMENTS treatment_time
END

96

OPERATOR start up
SPECIFICATION
INPUT patientchart: medical_history, temperature: real
OUTPUT estimatedpower: reai, treatmentfinished: boolean
BY REQUIREMENTS startup_time

MAXIMUM EXECUTION TIME 90 ms
BY REQUIREMENTS temperature_tolerance

DESCRIPTION
Extracts the tumor diameter from the medical history and
uses it to calculate the maximum safe treatment power.
Estimated power is zero if no tumr is present. The
treatment finished is true only if no tumor is present.}

END

IMPLEMENTATION Ada start_up
END

OPERATOR maintain
SPECIFICATION
INPUT temperature: real
OUTPUT estimated-power: real, treatment_finished: boolean
MAXIMUM EXECUTION TIME 90 ms
BY REQUIREMENTS temperature_tolerance

DESCRIPTION
{ The power is controlled to keep the power between 42.4

and 42.6 degrees C.}
END

IMPLEMENTATION Ada maintain
END

OPERATOR safety-control
SPECIFICAfION
INPUT treatment-switch, treatment_finished: boolean

estimatedpower: real
OUTPUT treatment-power: real
BY REQUIREMENTS shutdown

MAXIMUM EXECUTION TIME 10 ms
BY REQUIREMENTS temperature_tolerance

DESCRIPTION
The treatment power is equal to the estimated power
if the treatment switch is true and treatment finished
is false. Otherwise the treatment power is zero.}

END

IMPLEMENTATION Ada startup
END

97

LIST OF REFERENCES

1. Luqi, and Ketabchi, M. "A Computer Aided Prototyping System." IEEE Software,

(March, 1988): 67-72.

2. Ketabchi, M., Berzins, V., an(March, S. "ODM: An Object Oriented Model for

Design Databases". Proceedings, ACM Computer Science Conference, (February,

1986).

3. Janson, D. "A Static Scheduler for Hard Real-Time Constraints in The Computer

Aided Proiotyping System." M.S. Thesis, Naval Postgraduate School, March,

1988.

4. O'hern, J.T. "A Conceptual Design of a Static Scheduler for Hard Real-Time Sys-

tems.' M.S. Thesis, Naval Postgraduate School, March, 1988.

5. Eaton, S.L. "An Implementation Design of a Dynamic Scheduler for a Computer

Aided Prototyping System." M.S. Thesis, Naval Postgraduate School, March,

1988.

6. "News in Perspective." Datamation (September, 1980): 124.

7. Boehm, B.W. "Software Engineering." IEEE Transactions on Computers, C-25
(December, 1976).

8. Mills, lI.D. "Software Development." IEEE Transactions on Software Engineering,

(December 1976): 265-273.

9. Carrio, M.A., Jr. "Life Cycle and Ada." DS&E, (July 1986): 17-21.

10. Boehm, B.W. "The Hardware/Software Cost Ratio: Is It a Myth?" IEEE Com-

puter, 16,3 (March, 1983).

98

11. Boehm, B.W. "Software and Its Impact: A Qualitative Assessment." Datamation

(May, 1973): 48-59.

12. Booch, G.

.us Software Engineering With Ada. Menlo Park: The Benjamin/Cummings

Publishing Company, 1986.

13. Fisher, D.A. "A Common Programming Language For The Department of Defense

-- Background And Technical Requirements." Institute For Defense Analysis Report

P-1191 (June, 1976).

14. "A Strategy For A Software Initiative." Department of Defense, Ada Joint Program

Office, (1985).

15. Fairley, R. Software Engineering Concepts. New York: McGraw-Hill Book

Company, 1985.

16. Luqi. Research Aspects of Rapid Prototyping. Monterey, California: Naval Post-

graduate School Technical Report NPS52-87-006, [1987).

17. Reps, T.W. "Generating Language Based Environments." (ACM doctoral

disseration award; 1983). Cambridge: The MIT Press, [19841.

18. Brooks, F. The Mythical Man-Month. Reading, MA: Addison-Wesley, 1975.

19. Luqi. "Rapid Prototyping for Large Software System Design." Ph.D. dissertation,

University of Minnesota, May, 1986.

20. Luqi; Berzins, V.; and Yeh, R. "A Prototyping Language for Real Time Software."

IEEE Trransactions on Software Engineering, (April, 1988).

21. Luqi, and Berzins, V. "Rapid Prototyping of Real Time Systems." Monterey,

California: Naval Postgraduate School Technical Report NPS52-87-005, [19871.

99

22. Luqi, and Berzins, V. "Languages for Specification, Design, and Prototyping".

Handbook of Computer Aided Software Engineering. Van Nostrand Reinhold,

1988.

23. Luqi. Execution of Real-Time Prototypes. Monterey, California: Naval Postgrad-

uate School Technical Report NPS52-87-012, [19871.

24. Herndon, R.M. "Automatic Construction of Language Translators." Ph.D. disser-

tation, University of Minnesota, May, 1987.

25. Knuth, D.E. "Semantics of Context-Free Languages" Mathematical Systems The-

ory, (November 1967): 127-145.

26. Herndon, R.M., and Berzins, V. AG: A Useful Attribute Grammar Translator

Generator. Minneapolis, Minnesota: University of Minnesota Technical Report

85-25, [19851.

27. Lesk, M.E. Lex - A Lexical Analyzer Generator. Murray Hill, New Jersey: Bell

Labs Computing Science Technical Report No. 39, [19751.

28. Johnson, S.C. Yacc: Yet Another' Compiler Compiler Murray Hill, New Jersey:

Bell Labs Computing Science Technical Report No. 32, [19751.

29. Wallace, R.H. Practitioner's Guide To Ada®. New York: McGraw-Hill Book

Company, 1986.

30. Department of Defense Directive 5000.31. 10 June 1983.

31. "Naval Data Automation Command Advisory Bulletin Number 40." 3 January, 1983.

32. "Response to Questions Regarding Thesis Research for Development of Computer

Aided Software Prototyping Environment." Director, Naval Telecommunications

System Integration Center letter, 2023, Ser. 43/4008, 26 February, 1988.

100

33. U.S. Department of Defense. Reference Manual For The Ada Programming Lan-

guage, Proposed Standard Document July 1980.

34. "NA VMACS MODEL I Concept Paper." Contract N00039-85-C-0156, Task 13,

Item 3.4.1, 4 September, 1986.

35. Secretary of the Navy Instruction 4210.7A. 16 January, 1987.

36. Secretary of the Navy Instruction 5200.37. 5 January, 1988.

101

BIBLIOGRAPHY

Belinchon, R. "Real Time System Development Based on Ada.'Signal, The Interna-
tional Journal of C 1. 42 (October 1987) 67-70.

Berzins, V. Cache Management In Software Engineering Databases. Monterey,
California: Naval Postgraduate School Technical Report NPS52-87-010, [19871.

Berzins, V.; Gray, M.; and Naumann, D. "Abstraction Based Software Develop-
ment." Communications of the ACM, vol 29 no 5 (May 1986): 402-415.

Berzins, V., and Smith, K. A Bi-Directional Translator For Interfacing Citation Da-
tabases. Monterey, California: Naval Postgraduate School Technical Report
NPS52-87-013, [19871.

Berzins, V., and Simmel, S. A Software Management System. Monterey, California:
Naval Postgraduate School Technical Report NPS52-87-014, [1987].

Boehm, B.W. "Software and Its Impact: A Qualitative Assessment" Datamation,
(May, 1973): 48-59.

_ _ "Software Engineering". IEEE Transactions on Computers, C-25 (De-
cember, 1976).

"Software Engineering Education: Some Industry Needs," in Software En-
gineering Education: Needs and Objectives. Freeman, P. and Wasserman, A. eds.
Berlin: Springer-Verlag, 1976.

Software Engineering Economics. New Jersey: Prentice-Hall, Inc., 1981.
"The Hardware/Software Cost Ratio: Is It a Myth?" IEEE Computer, 16,3

(March, 1983).

Booch, G. Software Engineering With Ada. Menlo Park: The Benjamin/Cummings
Publishing Company, 1987.

Bray, G., and Pokrass D. Understanding Ada, A Software Engineering Approach.
New York: John Wiley & Sons, 1985.

Brooks, F. The Mythical Man-Month. Reading, MA: Addison-Wesley, 1975.

Carrio, M.A., Jr. "Life Cycle and Ada." DS&E, (July 1986): 17-21.

Dasarthy, B. "Timing Constraints of Real- Time Systems: Constructs for Expressing
Them, Methods of Validating Them." IEEE Transactions On Software Engineering,
Vol. SE-II, no. 1 (January, 1985): 80-86.

Eaton, S.L. "An Implementation Design of a Dynamic Scheduler for a Computer Aided
Prototyping System." M.S. Thesis, Naval Postgraduate School, March 119881.

Fairley, R. Software Engineering Concepts. New York: McGraw-Hill Book Com-
pany, 1985.

102

Fisher, D.A. "A Common Programming Language For The Department of Defense --

Background And Technical Requirements." Institute For Defense Analysis Report
P-1191 (June, 1976).

Herndon, R.M. The Incomplete AG User's Guide and Reference Manual. Minneapolis,
Minnesota: University of Minnesota Technial Report 85-37, [19851.

"Automatic Construction of Language Translators." Ph.D. dissertation,
University of Minnesota, May, 1987.

Herndon, R.M., and Berzins, V.A. AG: A Useful Attribute Grammar Translator
Generator. Minneapolis, Minnesota: University of Minnesota Technical Report 85-25,
[19851.

Jahanian, F. and Mok, A.K. "Safety Analysis of Timing Properties in Real-Time
Systems." IEEE Transactions on Software Engineering, SE-12 (September, 1986):
890-904.

Janson, D. "A Static Scheduler for tlard Real-Time Constraints in The Computer
Aided Prototyping System." M.S. Thesis, Naval Postgraduate School, March, [1988].

Johnson, S.C. Yacc.: Yet Another Compiler Compiler Murray Hill, New Jersey: Bell
Labs Computing Science Technical Report No. 32, [19751.

Ketabchi, M., Berzins, V., and March, S. "ODM: An Object Oriented Model for
Design Databases'. Proceedings, ACM Computer Science Conference, (February,
1986).

Knuth, D.E. "Semantics of Context-Free Languages" Mathematical Systems Theory,
(November 1967): 127-145.

Lesk, M.E. Lex - A Lexical Analyzer Generator. Murray Hill, New Jersey: Bell Labs
Computing Science Technical Report No. 39, [19751.

Leveson, N.G. Building Safe Software. Irvine: University of California, [19861.

Luqi. "Rapid Prototyping for Large Software System Design." Ph.D. dissertation,
University of Minnesota, May, 1986.

_ Execution of Real-Time Prototypes. Monterey, California: Naval Post-
graduate School Technical Report NPS52-87-012, [19871.

_ Research Aspects of Rapid Prototyping. Monterey, California: Naval
Postgraduate School Technical Report NPS52-87-006, [19871.

_ Normalized Specifications For Identifying Reusable Software.l Monterey,
California: Naval Postgraduate School Technical Report NPS52-87-007, [19871.

Luqi, and Berzins, V. "Rapid Prototyping of Real Time Systems." Monterey,
California: Naval Postgraduate School Technical Report NPS52-87-005, [19871.

Luqi, and Berzins, V. "Languages for Specification, Design, and Prototyping."
Handbook of Computer Aided Software Engineering. Van Nostrand Reinhold, 1988.

Luqi, and Ketabchi, M. "A Computer Aided Prototyping System." IEEE Software,
(March, 1988): 67-72.

103

Luqi, Berzins, V.; and Yeh, R. "A Prototyping Language for Real Time Software."
IEEE Transactions on Software Engineering. (April, 1988).

Mills, H.D. "Software Development." IEEE Transactions on Software Engineering,
(December 1976): 265-273.

Mok, A.K. "The Decomposition of Real-Time System Requirements Into Process
Models." Proceedings of the Real-Time Systems Symposium. Austin, Texas: (De-
cember, 1984): 125-134.

_ "The Design of Real- Time Programming Systems Based on Process Models."
Proceedings of the Real-Time Systems Symposium. Austin, Texas: (December,
1984): 5-17.

Mok, A.K., and Supoj S. "Modeling and Scheduling of Dataflow Real-Time Systems."
Proceedings of the Real-Time Systems Symposium. San Diego, California: (Decem-
ber, 1985): 178-187.

O'hern, J.T. "A Conceptual Design of a Static Scheduler for Hard Real-Time Systems.'
M.S. Thesis, Naval Postgraduate School, March, [1988].

Parnas, D.L. "On The Criteria To Be Used in Decomposing Systems Into Modules."
Communications of the ACM, (December 1972): 1053-1058.

Plattner, B. "Real-Time Execution Monitoring." IEEE Transactions on Software En-
gineering, SE-10 (November, 1984): 756-764.

Reps, T.W. "Generating Language Based Environments." (ACM doctoral disseration
award; 1983). Cambridge: The MIT Press, [1984].

Wallace, R.H. Practitioner's Guide To Ada®. New York: McGraw-Hill Book Com-
pany, 1986.

"News in Perspective." Datamation, (September, 1980): 124.

"A Strategy For A Software Initiative." Department of Defense, Ada Joint Program
Office, (1985).

"Response to Questions Regarding Thesis Research for Development of Computer Aided
Software Prototyping Environment." Director, Naval Telecommunications System In-
tegration Center letter, 2023, Ser. 43/4008, 26 February, 1988.

"NAVMACS MODEL II Concept Paper." Contract N00039-85-C- 0156, Task 13,
Item 3.4.1, 4 September, 1986.

Naval Data Automation Command Advisory Bulletin Number 40." 3 January, 1983.

Secretary of the Navy Instruction 4210,7A. 16 January, 1987.

Secretary of the Navy Instruction 5200.37. 5 January, 1988.

Department of Defense Directive 5000.31 10 June, 1983.

U.S. Department of Defense. Reference Manual For The Ada Programming Language,
Proposed Standard Document July 1980.

104

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. LT Charlie R. Moffitt, II, USN 2
Department Head Class #104
SWOSCOLCOM, Bldg. 446
Newport, RI 02841-5012

4. Office of the Chief of Naval Operations 2
Code OP-941
Washington, D.C. 20350

5. Office of the Chief of Naval Operations 2
Code OP-945
Washington, D.C. 20350

6. Commander Naval Telecommunications Command 2
Naval Telecommunications Command Headquarters
4401 Massachusetts Avenue N.W.
Washington, D.C. 20390-5290

7. Commander Naval Data Automation Command I
Washington Navy Yard
Washington, D.C. 20374-1662

8. Office of Naval Research I
Office of the Chief of Naval Research
Attn. CDR Michael Gehl, Code 1224
Arlington, VA 22217-5000

9. Director, Naval Telecommunications System Integration Center 1
NAVCOMMUNIT Washington
Washington, D.C. 20397-5340

10. Space and Naval Warfare Systems Command I
Attn. Dr. Knudsen, Code PD50
Washington, D.C. 20363-5100

105

11. Ada Joint Program Office
OUSDRE(R&AT)
The Pentagon
Washington, D.C. 20301

12. Professor L.Luqi
Code 52LQ
Naval Postgraduate School
Monterey, CA 93943

13. Maj. John B. Isett, USAF
Code 541S
Naval Postgraduate School
Monterey, CA 93943

14. Professor D.C. Boger
Code 54BO
Naval Postgraduate School
Monterey, CA 93943

15. Defense Communications Agency
Attn: LT S.L. Eaton, USN, Code B531
Washington, D.C. 20350

16. Commander Naval Security Group Command
Attn: LT Joanne T. O'Hern, USN, Code G30
3801 Nebraska Avenue, N.W.
Washington, D.C. 20390

17. LT Dorothy M. Janson, USN
USCINCEUR Headquarters
General Delivery
APO New York, NY 09128-4209

18. MAJ Mike Dolezal
Director, Development Center
MCDEC
Quantico, VA 22134-5080

19. Naval Sea Systems Command
Attn. CAPT. Joel Crandall
National Center #2, Suite 7N06
Washington, D.C. 22202

20. Office of the Secretary of Defense
Attn. CDR Barber
The Star Program
Washington, D.C. 20301

106

21. Naval Ocean System Center
Attn. Linwood Sutton, Code 423
San Diego, CA 92152-5000

22. RADC/COES
Attn. LT Kevin Benner
Griflis Air Force Base
New York, NY 13441-5700

107

Initial Distribution List

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

Dudley Knox Library 2
Code 0142
Naval Postgraduate School
Monterey, CA 93943

Center for Naval Analysis 1
4401 Ford Avenue
Alexandria, VA 22302-0268

Office of the Chief of Naval Operations 2
Code OP-941
Washington, D.C. 20350

Office of the Chief of Naval Operations 2
Code OP-945
Washington, D.C. 20340

Commander Naval Telecommunications Command 2
Naval Telecommunications Command Headquarters
4401 Massachusetts Avenue NW
Washington, D.C. 20390-5290

Commander Naval Data Automation Command 1
Washington Navy Yard
Washington, D.C. 20374-1662

Office of Naval Research 1
Office of the Chief of Naval Research
Attn. CDR Michael Gehl, Code 1224
Arlington, VA 22217-5000

Director, Naval Telecommunications System Integration Center 1
NAVCOMMUNIT Washington
Washington, D.C. 20363-5100

Space and Naval Warfare Systems Command 1
Attn: Dr. Knudsen, Code PD50
Washington, D.C. 20363-5100

Ada Joint Program Office 1
OUSDRE(R&AT)
The Pentagon
Washington, D.C. 230301

Naval Sea Systems Command 1
Attn: CAPT Joel Crandall
National Center #2, Suite 7N06
Washington, D.C. 22202

Office of the Secretary of Defense 1
Attn: CDR Barber
The Star Program
Washington, D.C. 20301

Naval Ocean Systems Center 1
Attn: Linwood Sutton, Code 423
San Diego, CA 92152-5000

National Science Foundation 1
Division of Computer and Computation Research
Washington, D.C. 20550

Director of Research Administration 1
Code 012
Naval Postgraduate School
Monterey, CA 93943

Chairman, Code 52 1
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

LuQi 150
Code 52Lq
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

